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What are signomials?

Start with “monomial” basis functions, for α ∈ Rn

eα : Rn → R++ takes values eα(x) = exp(αᵀx).
1

1

A signomial is a linear combination

f =
∑
α∈A

cαeα.

For modeling reasons, signomials are usually written in geometric form

y 7→
∑
α∈A

cα

n∏
i=1

yαi
i where yi = expxi.

If a signomial has all nonnegative coefficients, call it a posynomial.
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Signomial applications in optimization

A signomial program (SP) is an optimization problem stated with signomials, e.g.

inf
x∈Rn

{
f(x) : gi(x) ≤ 1 for all i in [k]

}
.

Major applications in aircraft design [1, 2, 3, 4, 5] and structrual engineering [6, 7, 8, 9].
Additional applications in EE [10], communications [11], and ML [12].
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Signomials are probably useful for you, too!

Consider the polynomial

p(t) = 1 + t− t3 + t4.

(
1

1

)
Suitably constructed (geometric-form) signomials can ...

(a) exactly mimic the polynomial on positive reals [13, 14]

a(y) = 1 + y − y3 + y4.

(b) produce a lower-bounding function [15, 16, 17, 18]

b(y) = 1− y − y3 + y4.

(c) perfectly capture zeroth-order behavior

c(y) = 1 +

(
y − 1

y

)
−
(
y − 1

y

)3

+

(
y − 1

y

)4

.
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Newton polytopes

Descartes’ Rule of Signs: Given real α1 < α2 < · · · < αm, the number of positive roots of

y 7→ c1y
α1 + c2y

α2 + · · ·+ cmy
αm

is bounded above by the number of sign alternations in c1, c2, . . . , cm.

In higher dimensions, consider “Newton polytopes”: convex hulls of exponent vectors.
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Infer properties of polynomials over Rn++, signomials over Rn (remember yi = expxi).
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What are Rn-circuits?

A circuit is a minimal affinely dependent A ⊂ Rn.

A circuit is simplicial if convA has |A| − 1 extreme points.

For a finite ground set A ⊂ Rn, define

RA := {real |A|-tuples indexed by α ∈ A},

so we can also understand A as an operator

A : RA → Rn, Aν =
∑
α∈Aανα.

Circuits A ⊂ A are in 1-to-1 correspondence with lines

{ν ∈ RA : 1ᵀν = 0, and suppν minimal among ν ∈ kerA}.

For simplicial circuits, {α : να > 0} = ext convA.
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Definitions from convex analysis

A set convex set K is called a cone if

x ∈ K ⇒ λx ∈ K for all λ > 0;

the dual cone to K is
K∗ = {y : yᵀx ≥ 0 for all x in K}.

A convex set X induces a support function

σX(λ) = sup{λᵀx : x in X}.
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This presentation

Content from arXiv:2006:06811, joint work with Thorsten Theobald and Helen Naumann.

Goal of that paper: better understand constrained signomial nonnegativity.

Along the way: generalize “circuit” to the constrained setting.

Outline of remaining presentation

Signomial nonnegativity on X ⊂ Rn via Sums-of-AM/GM-Exponentials.

For X ⊂ Rn convex and A ⊂ Rn finite, define simplicial X-circuits.

Explain some properties of these simplicial X-circuits.

Explain how simplicial X-circuits uniquely construct X-SAGE cones.
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Sums of AM/GM-Exponentials

Definition. An AM/GM-Exponential or “AGE function” is an Rn-nonnegative signomial,
which has at most one negative coefficient [19].

Example. Let f = eα1 + eα2 + eα3 − 3eα4 , for

α1 = (2, 4, 0), α2 = (4, 2, 0), α3 = (0, 0, 6), α4 = (2, 2, 2).

Use eα(x) = exp(αᵀx) = ex(α) and convexity to bound the negative term

α4 =
1

3
α1 +

1

3
α2 +

1

3
α3 ⇒ 3eα4 ≤ eα1 + eα2 + eα3 .

Historical note on nomenclature: convexity of exp is equivalent to the AM/GM inequality

u ∈ Rm++, λ ∈ Rm+ , λᵀ1 = 1 ⇒
m∏
i=1

uλi
i ≥

m∑
i=1

uiλi.
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SAGE for constrained problems

An X-AGE function is an X-nonnegative signomial, with at most one negative coefficient.

Introduce symbols for AGE cones and SAGE cones

CX(A) =
∑
β∈A

CX (A,β)︷ ︸︸ ︷{
f : c\β ≥ 0, f =

∑
α∈A

cαeα, f ≥ 0 on X

}

Theorem ([20])

Fix β ∈ A, and let f =
∑
α∈A cαeα. If X is convex, then f ∈ CX(A,β) if and only if

∃ ν ∈ RA where σX(−Aν) +D
(
ν\β, ec\β

)
≤ cβ and 1ᵀν = 0.

Special aspects of X = Rn

Immediate: ν must satisfy Aν = 0.

Nontrivial: If f is extremal, then supp c ⊂ A is a simplicial Rn-circuit.
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Definition of X-circuits

For β ∈ A, abbreviate Mβ = {ν ∈ RA : 1ᵀν = 0, ν\β ≥ 0, νβ = −1}.

Definition. A vector λ? ∈Mβ is a normalized X-circuit if

1. σX (−Aλ?) < +∞, and

2. strict local-sublinearity holds:

If L ⊂Mβ is a segment properly containing λ?, then σX (−Aλ) is nonlinear on L.

Defined for any closed convex set X.

Easy to characterize when X is a cone.

Can’t recover λ? given only information on suppλ? = {α : λ?α 6= 0}.

Let ΛX(A,β) denote circuits in Mβ, and aggregate

ΛX(A) =
⋃
β∈A

ΛX(A,β).
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Circuits induced by polyhedral X

For a face F of a polyhedron P , have the outer normal cone

NP (F ) = {w : zᵀw = σP (w) ∀z ∈ F}.

The outer normal fan aggregates the normal cones

O(P ) = {NP (F ) : F is a face of P}.

Normal fans provide a useful decomposition⋃
•

K∈O(P )

relintK = {z : σP (z) < +∞}.

Theorem ([21])

If X is polyhedral, then every circuit λ ∈ ΛX(A,β) generates a ray in the normal fan

O
(
−AᵀX −N∗β

)
where Nβ = {ν ∈ RA : 1ᵀν = 0, ν\β ≥ 0}.
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X-circuits for AGE functions

In order for f =
∑
α∈A cαeα to be X-AGE with cβ < 0 we need

∃ ν ∈ RA where σX(−Aν) +D(ν\β, ec\β) ≤ cβ and 1ᵀν = 0.

Fix λ ∈Mβ, restrict ν = sλ with scale s ≥ 0, and optimize over s. We get

CX(A,λ) :=

c ∈ RA :
∏
α 6=β

[
cα
λα

]λα

≥ −cβ exp (σX(−Aλ)) and c\β ≥ 0

 .

Theorem ([21])

If X is a closed convex set, X-AGE cones admit the representation

CX(A,β) = conv (∪{CX(A,λ) : λ ∈ ΛX(A,β)}) .
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Reduced X-circuits and SAGE

For λ ∈ ΛX(A), denote φλ = (λ, σX(−Aλ)) ∈ RA × R.

We call λ? a reduced circuit if φλ? is an edge generator of

cone ({φλ : λ ∈ ΛX(A)}∪{(0, 1)}) .

Theorem

Let R ⊂ RA denote the set of reduced circuits for (A, X). If X is polyhedral, then

CX(A) =
∑
λ∈R

CX(A,λ)

and moreover there is no proper subset Λ ( R for which CX(A) =
∑
λ∈Λ CX(A,λ).
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Conclusion

Example lines of future work:

If X is polyhedral: formal connection to matroid theory?

Analyze “non-simplicial” X-circuits.

Define “circuits” for product space of symmetric matrices. E.g.,

X ⊂ Sn, A = {Ai ∈ Sn}mi=1, and (Vi)
m
i=1 7→ σX

(
−

m∑
i=1

Ai ◦ Vi

)
︸ ︷︷ ︸

require local strict-sublinearity

.
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