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Definitions from convex analysis Caltech

X C R” is a convex set if it contains all of its line segments.

f:R™ — R is a convex function if

flte 4+ (1 —t)y) <tf(x)+ (1 —1t)f(y).

for all z,y € dom f and all t € [0, 1].
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X C R” is a convex set if it contains all of its line segments.
f:R™ —= R is a convex function if
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A convex set X induces a support function

ox(A) =sup{A\Tx : z in X}.
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Definitions from convex analysis Caltech

X C R” is a convex set if it contains all of its line segments.

f:R™ —= R is a convex function if
fltz+ (1= ty) < tf(@) + (1 — ) (y).
for all z,y € dom f and all t € [0, 1].
A convex set X induces a support function
ox(A) =sup{A\Tx : z in X}.

The relative entropy function continuously extends

m
D(u,v) = Zuz log(ui/v;) to R xR,
i=1
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Convex duality Caltech

Start with a primal problem

Val(¢) = inf{c"x : Az =b,z > 0}.
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Val(c) > L.
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Convex duality Caltech

Start with a primal problem
Val(c) = igf{cTa: : Az = b,z > 0}.
Obtain a dual problem
Val(c) = sup{b™p : AT < c}.

7
We will encounter constraints like

Val(c) > L.
Write such a constraint as: there exists a p where

ATu<c and b'pu> L.

Relative Entropy and Partial Dualization Riley Murray 3



Introduction SAGE signomials Optimization SAGE polynomials Conclusion

Nonnegativity and Optimization Caltech

Start with a function f and a set X C R”

inf{f(x) : « in X} =sup{y: f(x) >~ for all x in X}.
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Start with a function f and a set X ¢ R"
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Express f —~ = >, ¢i(7) - ¢; for some basis functions ¢;.
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Nonnegativity and Optimization Caltech

Start with a function f and a set X ¢ R"
inf{f(x):xin X} =sup{y: f(x) >~ forall z in X}.
Plan of attack for producing lower bounds:
Express f —~ = >, ¢i(7) - ¢; for some basis functions ¢;.

A Develop an inner approximation

C(p, X) C {c : Zciqﬁi(m) >0 for all x in X}.
i=1
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Nonnegativity and Optimization Caltech

Start with a function f and a set X ¢ R"
inf{f(x):xin X} =sup{y: f(x) >~ forall z in X}.
Plan of attack for producing lower bounds:
Express f —~ = >, ¢i(7) - ¢; for some basis functions ¢;.

A Develop an inner approximation

C’(qb,X) C {c : Zciqﬁi(m) > 0 for all z in X}.
i=1
Find largest  so ¢(7) belongs to C'(¢, X).
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Our functions of interest Caltech
polynomials signomials

Parameters ay; in N, ¢; in R. Parameters a; in R™, ¢; in R.
Using % = [}, x?” In “exponential form”,

m m

T — Zciaco”. T = Z ciexp(a; - ).

i=1 1=1

Countable basis. Uncountable basis.
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Our functions of interest

polynomials
Parameters ay; in N, ¢; in R.

_ , s
Using % =[]/, 2;",

m
T > E ;™.
i=1

Countable basis.

Complexity measured by degree
max; o1 + -+ + Qip.

Relative Entropy and Partial Dualization
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Caltech

signomials

Parameters a; in R™, ¢; in R.

In “exponential form”,
m
T — Z ciexp(ay - x).
i=1
Uncountable basis.

Complexity measured by
number of terms m.

Riley Murray 5
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How we think of signomials Caltech

Signomials are often written y — > """, c;y™, with y € R} .

The exponential form has a powerful connection to convexity.
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How we think of signomials Caltech
Signomials are often written y — >, c;y™, with y € R

The exponential form has a powerful connection to convexity.

One use of your existing intuition:
m Pick an “interesting” polynomial p.

m Define f(z) = p(exp(z) — exp(—2)).
m f will behave similarly to p, near 0.
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How we think of signomials Caltech

Signomials are often written y — > """, c;y™, with y € R} .

The exponential form has a powerful connection to convexity.

One use of your existing intuition:
m Pick an “interesting” polynomial p.
m Define f(z) = p(exp(z) — exp(—2)).
m f will behave similarly to p, near 0.
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Outline for the talk Caltech

This talk is about “SAGE certificates.”
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Outline for the talk Caltech

This talk is about “SAGE certificates.”

SAGE signomials

Definition —  Representation —  Example.

H Signomial optimization
m Simple “SAGE relaxations.”
m Partial dualization.
m Two examples.

SAGE polynomials

Definition — Example —  Representation.
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The signomial X-nonnegativity cones Caltech

The X-nonnegativity cone for signomials over exponents a:

Cnns(a, X) { ch exp(a; - x) > 0 for all  in X} .

Relative Entropy and Partial Dualization Riley Murray 8



Introduction SAGE signomials Optimization SAGE polynomials Conclusion

The signomial X-nonnegativity cones Caltech

The X-nonnegativity cone for signomials over exponents a:

Cnns(a, X) { ZC’ exp(a; - x) > 0 for all z in X}

If
f(x) =crexp(0-x) + caexp(ag - ) + -+ - + ¢ exp(ayy, - x),
then

inf f(x) =sup{y: c—(7,0,...,0) € Cnns(a,X)}.

xeX
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X-SAGE = X-nonnegativity Caltech

Definition. A signomial which is nonnegative over X and which
has at most one negative coefficient is an “X-AGE function.”
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Definition. A signomial which is nonnegative over X and which
has at most one negative coefficient is an “X-AGE function.”

We take sums of X-AGE cones to obtain the X-SAGE cone

Csace(a, X) = Z{c : e\, > 0and cin Oxns(e, X))
k=1
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X-SAGE = X-nonnegativity Caltech

Definition. A signomial which is nonnegative over X and which
has at most one negative coefficient is an “X-AGE function.”

We take sums of X-AGE cones to obtain the X-SAGE cone

Csace(a, X) = Z{c : e\, > 0and cin Oxns(e, X))
k=1

Crucial question: How to represent the AGE cones?
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The convex duality behind AGE cones Caltech

Fix o in R™*", and ¢ in R™ satisfying ¢\, > 0. Convex X C R".
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The convex duality behind AGE cones Caltech

Fix o in R™*", and ¢ in R™ satisfying ¢\, > 0. Convex X C R".

Divide out the problematic exponential, and rearrange terms:

Sy ciexplag ) >0 & 3L ciexp((o — o] @) > 0
Zi;ﬁk G EXP([ai - ak] LX) > —cg.
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Sy ciexplag ) >0 & 3L ciexp((o — o] @) > 0
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inf { Zz’;ﬁk ciexp([oy — o] -x) + x in X} > —c,

holds if and only if there exists v in R™~!, X in R satisfying

Relative Entropy and Partial Dualization Riley Murray 10



Introduction SAGE signomials Optimization SAGE polynomials Conclusion

The convex duality behind AGE cones Caltech
Fix o in R™*", and ¢ in R™ satisfying ¢\, > 0. Convex X C R".
Divide out the problematic exponential, and rearrange terms:

Sy ciexplag ) >0 & 3L ciexp((o — o] @) > 0
Zi;ék G EXP([ai - ak] LX) > —cg.

The nonnegativity condition
inf { doizkciexp(log —ag]-x) : xin X} > —cg
holds if and only if there exists v in R™~!, X in R satisfying
lay — a\k]TV =X and

Ux()\) + D(V, C\k) — vl < ¢.
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Tractability of X-SAGE cones Caltech

There are two constraints in an AGE cone:
m [lag — o'y = A, and

mox(A)+ D, e\) — vl < ¢

Support function ox(A) = sup{ATx : x in X} always convex.
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Tractability of X-SAGE cones Caltech

There are two constraints in an AGE cone:
m [loy, — o ]Tv = A, and

mox(A)+Dv,e) — vl < e
Support function o x () = sup{ATx :  in X} always convex.

When does it have a closed form? Examples include ...

0 ifA=0
X=R" = ox(A)= f
+oo ifA#O0
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Tractability of X-SAGE cones Caltech

There are two constraints in an AGE cone:

m [log — a\k]TV =), and

B ox(A)+ D, e\) — vl <
Support function ox(A) = sup{ATx : x in X} always convex.

When does it have a closed form? Examples include ...

X={z:|lx—al|<r} = oxA)=ATa+r|A]
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Tractability of X-SAGE cones Caltech

There are two constraints in an AGE cone:
m [lag — an]Tv = A, and
mox(A)+ D, ey) — vl < ¢
Support function ox(A) = sup{ATx : x in X} always convex.

When is it tractable?

Whenever X is tractable.
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A univariate example Caltech

f(:l?) — e—3x + e—2x 4 4e® 4+ 62:(: —4e T _1— 6330 over x <0
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A univariate example Caltech

f(m) — 6—390 + e—2x 4 4e® 4+ 62:1: —4e T _1— 6390 over x <0

.

-0.5 0.5 1.0

fi(z) =0.88 €737 40.82-¢72* +2.69 e +0.12-€** —4.¢*
fo(z) =0.10 - €3 40.15- 72 +0.90 - €* +0.12 - — 1
f3(z) =0.02- €737 +0.03- 2% +0.41 - ¥ 4+ 0.76 - €** — 3*
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A univariate example Caltech

f(:l?) — 6—390 + e—2x 4 4e® 4+ 621: —4e T _1— 6390 over x <0

/

T I I
0.5 1.0
—2F
-3L

fi(z) =0.88 €737 40.82-¢72* +2.69 e +0.12-€** —4.¢*
fo(z) =0.10 - €3 40.15- 72 +0.90 - €* +0.12 - — 1
f3(z) =0.02- €737 +0.03- 2% +0.41 - ¥ 4+ 0.76 - €** — 3*
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Optimization.
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Simple SAGE relaxations Caltech
Consider f(x) => ", ciexp(oy - ) with a; = 0.

inf{f(x) : xin X} =sup{~ : ¢—~ve; in Cxns(e, X)}

>sup{vy : ¢— ey in Cspagr(a, X)}

i T
—inflcTw: " CSAGE(Q’X)
satisfies v-e; =1

What about solution recovery?
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Simple SAGE relaxations Caltech

Consider f(x) => ", ciexp(oy - ) with a; = 0.
inf{f(x) : « in X} =sup{y : ¢—~e; in Cxns(a, X)}

>sup{vy : ¢— ey in Cspagr(a, X)}

i T
—inflcTw: " CSAGE(Q’X)
satisfies v-e; =1

What about solution recovery? When X is convex, we have

CSAGE(a,X)J' = cl{v : some zq,..., 2, in R" satisfy
vg log(v/vg) > [ — 1oy ]z
and zj /v, € X for all k in [m]}.
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An example in R3 Caltech
Minimize
f(x) =0.5exp(x; — x2) —expxy — Hexp(—x2)
over
X ={x :1log70 <z <log150,
log 1.0 < z9 < log 30,

log 0.5 < z3 <log21
exp(z2 — x3) + exp x2 + 0.05 exp(x; + z3) < 100}.
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Minimize

f(x) =0.5exp(x; — x2) —expxy — Hexp(—x2)

over

X ={x :1log70 <z <log150,
log 1.0 < z9 < log 30,
log 0.5 < z3 <log21
exp(z2 — x3) + exp x2 + 0.05 exp(x; + z3) < 100}.

Compute f;AGE = —147.85713 < f%, recover feasible
x* = (5.01063529, 3.40119660, —0.48450710)

satisfying f(x*) = —147.66666.
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An example in R3 Caltech
Minimize

f(x) =0.5exp(x; — x2) —expxy — Hexp(—x2)

over

X ={x :1log70 <z <log150,
log 1.0 < z9 < log 30,
log 0.5 < z3 <log21
exp(z2 — x3) + exp x2 + 0.05 exp(x; + z3) < 100}.

Compute f;AGE = —147.85713 < f%, recover feasible
x* = (5.01063529, 3.40119660, —0.48450710)

satisfying f(x*) = —147.66666. This is actually optimal!
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Nonconvex contraints Caltech

Q: What should we do when some constraints are nonconvex?
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Q: What should we do when some constraints are nonconvex?

A: Combine X-SAGE certificates with Lagrangian relaxations.

Concretely, suppose we want to minimize f over
Q=Xn{x: g(x) <0}

where X is convex, but g1, ..., g, are nonconvex signomials.
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Nonconvex contraints Caltech

Q: What should we do when some constraints are nonconvex?

A: Combine X-SAGE certificates with Lagrangian relaxations.

Concretely, suppose we want to minimize f over
Q=Xn{x: g(x) <0}
where X is convex, but g1, ..., g, are nonconvex signomials.

Then, if Aq,..., \x are nonnegative dual variables, we have

k
i > . 1g; — i - .
;}relgf(w)_sup{'y f+2)\g ’}/ISXSAGE}

i=1
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The SimP1eAC aircraft design problem Caltech

From Warren Hoburg's PhD thesis.

Problem statistics:
m 140 variables.
m 89 inequality constraints (1 nonconvex).

m 67 equality constraints (15 nonconvex).

Performance of the most basic SAGE relaxation:
m bound “cost > 2957" (roughly match a known solution).
m MOSEK solves in two seconds, on a six year old laptop.

m solution recovery fails (numerical issues).
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SAGE polynomials
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X-nonnegative and X-AGE polynomials  Caltech

Recall our standard notation 2 = [[7_, z;

The matrix o and a set X C R" induce a nonnegativity cone

Onnp(a, X)) ={c : cjx® + -+ ¢z >0 for all z in X}.
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X-nonnegative and X-AGE polynomials  Caltech

Recall our standard notation 2 = [[7_, z;

The matrix o and a set X C R" induce a nonnegativity cone

Onnp(a, X)) ={c : cjx® + -+ ¢z >0 for all z in X}.

Def. f(x) = cix® + -+ + cyz® is an X-AGE polynomial if

c belongs to Cxnp (e, X), and

H at most one "k has cx® < 0 for some x € X.
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A symbolic example

Consider flx) = n—z H zj over
=1 jen)\{i}

Let's prove that f is X-nonnegative.
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A symbolic example

Consider f(:z:):n—z H zj over

Let's prove that f is X-nonnegative.

Note that € {—1,1}" implies [ [, ,,; z; < 1.

B Therefore fi(z) =1 —[],,;z; are X-AGE.
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A symbolic example

n

Consider flx) = n—z H zj over
=1 jen)\{i}

Let's prove that f is X-nonnegative.

Note that € {—1,1}" implies [ [, ,,; z; < 1.

B Therefore fi(z) =1 —[],,;z; are X-AGE.

Since f =Y, fi, conclude f is X-SAGE.

Relative Entropy and Partial Dualization Riley Murray

Caltech

X ={-1,1}"
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The representation problem Caltech

The cone of coefficients for X-SAGE polynomials is given by

IO (@ x) = 3 {

cin Cxnp(a, X), and for
itkxeX=cxt>0]
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The representation problem Caltech

The cone of coefficients for X-SAGE polynomials is given by

IO (@ x) = 3 {

k=1

cin Cxnp(a, X), and for
itkxeX=cxt>0]

m This definition cares about the behavior of monomials.
m SAGE signomials put monomials front and center.

m Monomials “x®" are quite different from “exp(cy; - x)".
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Representation: the single-orthant case Caltech
Consider X C R"}, and define X, , = X NR%, .

1#£kxeX=cx*>0

CEORY (. x) = 3 {

cin Cnnp(a, X), and for }
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Representation: the single-orthant case Caltech

Consider X C R"}, and define X, , = X NR%, .

CEORY (. x) = 3 {

k=1

cin Cnnp(a, X), and for
1#£kxeX=cx*>0

Fact 1. If X = cl X4, then CNNp(a,X) = C’NNS(a,logX++).
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Representation: the single-orthant case Caltech

Consider X C R"}, and define X, , = X NR%, .

CEORY (. x) = 3 {

k=1

cin Cnnp(a, X), and for
1#£kxeX=cx*>0

Fact 1. If X = cl X4, then CNNp(a,X) = C’NNS(a,logX++).

Fact 2. Since X C R}, “c;z® >0V x € X" reduces to ¢; > 0.
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Representation: the single-orthant case Caltech

Consider X C R"}, and define X, , = X NR%, .

1#£kxeX=cx*>0

CEORY (. x) = 3 {

k=1

cin Cnnp(a, X), and for }

Fact 1. If X = cl X4, then CNNp(a,X) = C’NNS(a,logX++).

Fact 2. Since X C R}, “c;z® >0V x € X" reduces to ¢; > 0.

- cin Cxns(a,log Xy ), |
Z {C and¢; >0foralli £k Csage(a,log X4 41)

k=1

Relative Entropy and Partial Dualization Riley Murray

Conclusion

22



Introduction SAGE signomials Optimization SAGE polynomials Conclusion

Representation: sign-symmetry Caltech

Consider X C R"™ which satisfies

invariance under reflection about {x : z; = 0},
and X HRZL_ = C1X++.

For example, X = {—1,1}".
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Representation: sign-symmetry Caltech

Consider X C R™ which satisfies
invariance under reflection about {x : z; = 0},

and X HRZL_ = C1X++.
For example, X = {—1,1}".

It can subsequently be shown that

OO (o, X) = {c :some & € Csacr(a, log X ) satisfies

¢; = c¢; whenever «; is in 2N", and

¢i < —|ci| whenever a; is not in 2N"}.
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Caltech

Consider X C R™ which satisfies

invariance under reflection about {x : z; = 0},
and X HRZL_ = C1X++.

For example, X = {—1,1}".

It can subsequently be shown that

OO (o, X) = {c :some & € Csacr(a, log X ) satisfies

¢; = c¢; whenever «; is in 2N", and

¢i < —|ci| whenever a; is not in 2N"}.

If a; isn't even, then some x1, o € X satisfy " < 0 < x5"
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Log-log convexity Caltech

For what X C R}, is log X convex?
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Log-log convexity Caltech

For what X C R}, is log X convex?

A function g is log-log convex on D C R}, when
m log D is a convex set, and
m log(x) — log g(x) is convex function.

Such functions are sometimes called geometrically convex.
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Log-log convexity Caltech

For what X C R}, is log X convex?

A function g is log-log convex on D C R}, when
m log D is a convex set, and
m log(x) — log g(x) is convex function.

Such functions are sometimes called geometrically convex.
Studied by Montel (1928) and Niculescu (2000), among others.

If g1,..., gk are log-log convex on a box B C R’} ,, then

log{(z,t) : x € B, t e RE | g(x) <t} CR™* s convex.

Relative Entropy and Partial Dualization Riley Murray
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Log-log convexity: examples

With domains D = R" | :

g(x) = max{zy,...,z,}
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an

g(@) = af" -y
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Log-log convexity: examples Caltech
With domains D = R" | : With more restricted domains:
g(x) = max{zy,...,z,} r > (—zlogz)™? D =(0,1)

an

g(@) = af" -y
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Log-log convexity: examples

With more restricted domains:

> (—rlogz)™!

X I-X)!

D={X eR}" : p(X) <1}
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Log-log convexity: examples Caltech
With domains D = R" | : With more restricted domains:
g(x) = max{zy,...,z,} r > (—zlogz)™? D =(0,1)
g(@) = zy" - agr X (I-Xx)"

- -1 D={X e Ry : p(X) <1}
g9(z) = (/w et dt> — S
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Log-log convexity: examples Caltech
With domains D = R" | : With more restricted domains:
g(x) = max{zy,...,z,} r > (—zlogz)™? D =(0,1)
g(@) = zy" - agr X I-Xx)"

- -1 D={X e Ry : p(X) <1}
g9(z) = (/w et dt> — S

Some tractable constraints for X-SAGE polynomials:
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Log-log convexity: examples Caltech
With domains D = R" | : With more restricted domains:
g(x) = max{zy,...,z,} r > (—zlogz)™? D =(0,1)
g(@) = zy" - agr X I-Xx)"

- -1 D={X e Ry : p(X) <1}
g9(z) = (/w et dt> — S

Some tractable constraints for X-SAGE polynomials:
el <a af=a  a<P{N(0,0)> |a]}

where a > 0.
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Thank you!
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Handling conditional nonnegativity

Typically, one reduces “X-nonnegativity” to the case X = R".

The standard recipe

Adopt a representation X = {x : g(x) > 0}.
Find an identity
F=L+) Mg

where £ and \; are known to be nonnegative on R".

E.g., the positivstellensatz of Putinar, Stengle, or Schmudgen.
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Use the sageopt python package. Caltech

Python 3.5 or higher (recommend > 3.6).

®m “pip install sageopt”

Signomial and polynomial optimization.

Require open-source convex solver, ECOS.

m Recommend commercial solver, MOSEK.
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