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Definitions from convex analysis

X ⊂ Rn is a convex set if it contains all of its line segments.

f : Rn → R is a convex function if

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y).

for all x,y ∈ dom f and all t ∈ [0, 1].

A convex set X induces a support function

σX(λ) = sup{λᵀx : x in X}.

The relative entropy function continuously extends

D(u,v) =

m∑
i=1

ui log(ui/vi) to Rm+ × Rm+ .
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Convex duality

Start with a primal problem

Val(c) = inf
x
{cᵀx : Ax = b,x ≥ 0}.

Obtain a dual problem

Val(c) = sup
µ
{bᵀµ : Aᵀµ ≤ c}.

We will encounter constraints like

Val(c) ≥ L.

Write such a constraint as: there exists a µ where

Aᵀµ ≤ c and bᵀµ ≥ L.
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Nonnegativity and Optimization

Start with a function f and a set X ⊂ Rn

inf{f(x) : x in X} = sup{γ : f(x) ≥ γ for all x in X}.

Plan of attack for producing lower bounds:

1 Express f − γ =
∑m

i=1 ci(γ) · φi for some basis functions φi.

2 Develop an inner approximation

C̃(φ,X) ⊂

{
c :

m∑
i=1

ciφi(x) ≥ 0 for all x in X

}
.

3 Find largest γ so c(γ) belongs to C̃(φ,X).
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Our functions of interest

polynomials

Parameters αi in Nn, ci in R.

Using xαi =
∏n
j=1 x

αij

j ,

x 7→
m∑
i=1

cix
αi .

Countable basis.

Complexity measured by degree
maxi αi1 + · · ·+ αin.

signomials

Parameters αi in Rn, ci in R.

In “exponential form”,

x 7→
m∑
i=1

ci exp(αi · x).

Uncountable basis.

Complexity measured by
number of terms m.
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How we think of signomials

Signomials are often written y 7→
∑m

i=1 ciy
αi , with y ∈ Rn++.

The exponential form has a powerful connection to convexity.

One use of your existing intuition:

Pick an “interesting” polynomial p.

Define f(z) = p (exp(z)− exp(−z)).

f will behave similarly to p, near 0.
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Introduction SAGE signomials Optimization SAGE polynomials Conclusion

How we think of signomials

Signomials are often written y 7→
∑m

i=1 ciy
αi , with y ∈ Rn++.

The exponential form has a powerful connection to convexity.

One use of your existing intuition:

Pick an “interesting” polynomial p.

Define f(z) = p (exp(z)− exp(−z)).

f will behave similarly to p, near 0.

Relative Entropy and Partial Dualization Riley Murray 6



Introduction SAGE signomials Optimization SAGE polynomials Conclusion

How we think of signomials

Signomials are often written y 7→
∑m

i=1 ciy
αi , with y ∈ Rn++.

The exponential form has a powerful connection to convexity.

One use of your existing intuition:

Pick an “interesting” polynomial p.

Define f(z) = p (exp(z)− exp(−z)).

f will behave similarly to p, near 0.

Relative Entropy and Partial Dualization Riley Murray 6



Introduction SAGE signomials Optimization SAGE polynomials Conclusion

Outline for the talk

This talk is about “SAGE certificates.”

1 SAGE signomials

Definition → Representation → Example.

2 Signomial optimization

Simple “SAGE relaxations.”
Partial dualization.
Two examples.

3 SAGE polynomials

Definition → Example → Representation.
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The signomial X-nonnegativity cones

The X-nonnegativity cone for signomials over exponents α:

CNNS(α, X)
.
=

{
c :

m∑
i=1

ci exp(αi · x) ≥ 0 for all x in X

}
.

If

f(x) = c1 exp(0 · x) + c2 exp(α2 · x) + · · ·+ cm exp(αm · x),

then

inf
x∈X

f(x) = sup {γ : c− (γ, 0, . . . , 0) ∈ CNNS(α, X)} .
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X-SAGE ⇒ X-nonnegativity

Definition. A signomial which is nonnegative over X and which
has at most one negative coefficient is an “X-AGE function.”

We take sums of X-AGE cones to obtain the X-SAGE cone

CSAGE(α, X) =
m∑
k=1

{c : c\k ≥ 0 and c in CNNS(α, X)}︸ ︷︷ ︸
kth X-AGE cone

.

Crucial question: How to represent the AGE cones?

Relative Entropy and Partial Dualization Riley Murray 9
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The convex duality behind AGE cones

Fix α in Rm×n, and c in Rm satisfying c\k ≥ 0. Convex X ⊂ Rn.

Divide out the problematic exponential, and rearrange terms:∑m
i=1 ci exp(αi · x) ≥ 0 ⇔

∑m
i=1 ci exp([αi −αk] · x) ≥ 0∑
i 6=k ci exp([αi −αk] · x) ≥ −ck.

The nonnegativity condition

inf
{∑

i6=k ci exp([αi −αk] · x) : x in X
}
≥ −ck

holds if and only if there exists ν in Rm−1, λ in Rn satisfying

[1αk −α\k]ᵀν = λ and

σX(λ) +D(ν, c\k)− νᵀ1 ≤ ck.

Relative Entropy and Partial Dualization Riley Murray 10
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Tractability of X-SAGE cones

There are two constraints in an AGE cone:

[1αk −α\k]ᵀν = λ, and

σX(λ) +D(ν, c\k)− νᵀ1 ≤ ck.

Support function σX(λ) = sup{λᵀx : x in X} always convex.
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σX(λ) +D(ν, c\k)− νᵀ1 ≤ ck.

Support function σX(λ) = sup{λᵀx : x in X} always convex.

When does it have a closed form? Examples include ...

X = Rn ⇒ σX(λ) =

{
0 if λ = 0

+∞ if λ 6= 0
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Tractability of X-SAGE cones

There are two constraints in an AGE cone:

[1αk −α\k]ᵀν = λ, and

σX(λ) +D(ν, c\k)− νᵀ1 ≤ ck.

Support function σX(λ) = sup{λᵀx : x in X} always convex.

When is it tractable?

Whenever X is tractable.
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A univariate example

f(x) = e−3x + e−2x + 4ex + e2x − 4e−x − 1− e3x over x ≤ 0

-0.5 0.5 1.0

-3

-2

-1

1

2

3

4

f1(x) = 0.88 · e−3x + 0.82 · e−2x + 2.69 · ex + 0.12 · e2x − 4 · e−x

f2(x) = 0.10 · e−3x + 0.15 · e−2x + 0.90 · ex + 0.12 · e2x − 1

f3(x) = 0.02 · e−3x + 0.03 · e−2x + 0.41 · ex + 0.76 · e2x − e3x

Relative Entropy and Partial Dualization Riley Murray 12
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Optimization.
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Simple SAGE relaxations

Consider f(x) =
∑m

i=1 ci exp(αi · x) with α1 = 0.

inf{f(x) : x in X} = sup{ γ : c− γe1 in CNNS(α, X)}

≥ sup{ γ : c− γe1 in CSAGE(α, X)}

= inf

{
cᵀv :

v in CSAGE(α, X)†

satisfies v · e1 = 1

}
What about solution recovery?

When X is convex, we have

CSAGE(α, X)† = cl{v : some z1, . . . ,zm in Rn satisfy

vk log(v/vk) ≥ [α− 1αk]zk

and zk/vk ∈ X for all k in [m]}.

Relative Entropy and Partial Dualization Riley Murray 14
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An example in R3

Minimize

f(x) = 0.5 exp(x1 − x2)− expx1 − 5 exp(−x2)

over

X = {x : log 70 ≤ x1 ≤ log 150,

log 1.0 ≤ x2 ≤ log 30,

log 0.5 ≤ x3 ≤ log 21

exp(x2 − x3) + expx2 + 0.05 exp(x1 + x3) ≤ 100}.

Compute fSAGE
X = −147.85713 ≤ f?X , recover feasible

x? = (5.01063529, 3.40119660,−0.48450710)

satisfying f(x?) = −147.66666. This is actually optimal!
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Nonconvex contraints

Q: What should we do when some constraints are nonconvex?

A: Combine X-SAGE certificates with Lagrangian relaxations.

Concretely, suppose we want to minimize f over

Ω
.
= X ∩ {x : g(x) ≤ 0}

where X is convex, but g1, . . . , gk are nonconvex signomials.

Then, if λ1, . . . , λk are nonnegative dual variables, we have

inf
x∈Ω

f(x) ≥ sup

{
γ : f +

k∑
i=1

λigi − γ is X-SAGE

}
.
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The SimPleAC aircraft design problem

From Warren Hoburg’s PhD thesis.

Problem statistics:

140 variables.

89 inequality constraints (1 nonconvex).

67 equality constraints (15 nonconvex).

Performance of the most basic SAGE relaxation:

bound “cost ≥ 2957” (roughly match a known solution).

MOSEK solves in two seconds, on a six year old laptop.

solution recovery fails (numerical issues).
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SAGE polynomials
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X-nonnegative and X-AGE polynomials

Recall our standard notation xαi
.
=
∏n
j=1 x

αij

j .

The matrix α and a set X ⊂ Rn induce a nonnegativity cone

CNNP(α, X) = {c : c1x
α1 + · · ·+ cmx

αm ≥ 0 for all x in X}.

Def. f(x) = c1x
α1 + · · ·+ cmx

αm is an X-AGE polynomial if

1 c belongs to CNNP(α, X), and

2 at most one “k” has ckx
αk < 0 for some x ∈ X.

Relative Entropy and Partial Dualization Riley Murray 19
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A symbolic example

Consider f(x) = n−
n∑
i=1

∏
j∈[n]\{i}

xj over X = {−1, 1}n.

Let’s prove that f is X-nonnegative.

1 Note that x ∈ {−1, 1}n implies
∏
j 6=i xj ≤ 1.

2 Therefore fi(x) = 1−
∏
j 6=i xj are X-AGE.

3 Since f =
∑n

i=1 fi, conclude f is X-SAGE.
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The representation problem

The cone of coefficients for X-SAGE polynomials is given by

CPOLY
SAGE (α, X) =

m∑
k=1

{
c

∣∣∣∣ c in CNNP(α, X), and for

i 6= k,x ∈ X ⇒ cix
αi ≥ 0

}
.

This definition cares about the behavior of monomials.

SAGE signomials put monomials front and center.

Monomials “xαi” are quite different from “exp(αi · x)”.
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Representation: the single-orthant case

Consider X ⊂ Rn+, and define X++
.
= X ∩ Rn++.

CPOLY
SAGE (α, X) =

m∑
k=1

{
c

∣∣∣∣ c in CNNP(α, X), and for
i 6= k,x ∈ X ⇒ cix

αi ≥ 0

}

Fact 1. If X = clX++, then CNNP(α, X) = CNNS(α, logX++).

Fact 2. Since X ⊂ Rn+, “cix
αi ≥ 0 ∀ x ∈ X” reduces to ci ≥ 0.

m∑
k=1

{
c

∣∣∣∣ c in CNNS(α, logX++),
and ci ≥ 0 for all i 6= k

}
= CSAGE(α, logX++)
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Representation: sign-symmetry

Consider X ⊂ Rn which satisfies

1 invariance under reflection about {x : xi = 0},
2 and X ∩ Rn+ = clX++.

For example, X = {−1, 1}n.

It can subsequently be shown that

CPOLY
SAGE (α, X) = {c : some ĉ ∈ CSAGE(α, logX++) satisfies

ĉi = ci whenever αi is in 2Nn, and

ĉi ≤ −|ci| whenever αi is not in 2Nn}.

If αi isn’t even, then some x1,x2 ∈ X satisfy xαi
1 < 0 < xαi

2 .
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ĉi ≤ −|ci| whenever αi is not in 2Nn}.

If αi isn’t even, then some x1,x2 ∈ X satisfy xαi
1 < 0 < xαi

2 .

Relative Entropy and Partial Dualization Riley Murray 23



Introduction SAGE signomials Optimization SAGE polynomials Conclusion

Representation: sign-symmetry

Consider X ⊂ Rn which satisfies

1 invariance under reflection about {x : xi = 0},
2 and X ∩ Rn+ = clX++.

For example, X = {−1, 1}n.

It can subsequently be shown that

CPOLY
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Log-log convexity

For what X ⊂ Rn++ is logX convex?

A function g is log-log convex on D ⊂ Rn++ when

logD is a convex set, and

log(x) 7→ log g(x) is convex function.

Such functions are sometimes called geometrically convex.

Studied by Montel (1928) and Niculescu (2000), among others.

If g1, . . . , gk are log-log convex on a box B ⊂ Rn++, then

log{(x, t) : x ∈ B, t ∈ Rk++, g(x) ≤ t} ⊂ Rn+k is convex.
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Log-log convexity: examples

With domains D = Rn++:

g(x) = max{x1, . . . , xn}

g(x) = xa11 · · ·xann

g(x) =

(∫ ∞
x

e−t
2
dt

)−1

With more restricted domains:

x 7→ (−x log x)−1 D = (0, 1)

X 7→ (I −X)−1

D = {X ∈ Rn×n++ : ρ(X) < 1}

x 7→ (log x)−1 D = (1,∞)

Some tractable constraints for X-SAGE polynomials:

‖x‖p ≤ a x2
j = a a ≤ P{N (0, σ) ≥ |x|}

where a > 0.
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Thank you!
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Handling conditional nonnegativity

Typically, one reduces “X-nonnegativity” to the case X = Rn.

The standard recipe

1 Adopt a representation X = {x : g(x) ≥ 0}.
2 Find an identity

f = L+
∑
i

λigi

where L and λi are known to be nonnegative on Rn.

E.g., the positivstellensatz of Putinar, Stengle, or Schmudgen.
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Use the sageopt python package.

Python 3.5 or higher (recommend ≥ 3.6).

“pip install sageopt”

Signomial and polynomial optimization.

Require open-source convex solver, ECOS.

Recommend commercial solver, MOSEK.
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