

Signomial and Polynomial Optimization via Relative Entropy and Partial Dualization

Riley Murray

Presented at MPI MiS
Leipzig, Germany

2 October 2019

Joint work with Venkat Chandrasekaran and Adam Wierman.

Definitions from convex analysis

$X \subset \mathbb{R}^n$ is a **convex set** if it contains all of its line segments.

$f : \mathbb{R}^n \rightarrow \mathbb{R}$ is a **convex function** if

$$f(tx + (1 - t)y) \leq tf(x) + (1 - t)f(y).$$

for all $x, y \in \text{dom } f$ and all $t \in [0, 1]$.

Definitions from convex analysis

$X \subset \mathbb{R}^n$ is a **convex set** if it contains all of its line segments.

$f : \mathbb{R}^n \rightarrow \mathbb{R}$ is a **convex function** if

$$f(tx + (1 - t)y) \leq tf(x) + (1 - t)f(y).$$

for all $x, y \in \text{dom } f$ and all $t \in [0, 1]$.

A convex set X induces a **support function**

$$\sigma_X(\lambda) = \sup\{\lambda^\top x : x \text{ in } X\}.$$

Definitions from convex analysis

$X \subset \mathbb{R}^n$ is a **convex set** if it contains all of its line segments.

$f : \mathbb{R}^n \rightarrow \mathbb{R}$ is a **convex function** if

$$f(tx + (1 - t)y) \leq tf(x) + (1 - t)f(y).$$

for all $x, y \in \text{dom } f$ and all $t \in [0, 1]$.

A convex set X induces a **support function**

$$\sigma_X(\lambda) = \sup\{\lambda^T x : x \text{ in } X\}.$$

The **relative entropy function** continuously extends

$$D(u, v) = \sum_{i=1}^m u_i \log(u_i/v_i) \quad \text{to} \quad \mathbb{R}_+^m \times \mathbb{R}_+^m.$$

Convex duality

Start with a **primal** problem

$$\text{Val}(\mathbf{c}) = \inf_{\mathbf{x}} \{ \mathbf{c}^\top \mathbf{x} : \mathbf{A}\mathbf{x} = \mathbf{b}, \mathbf{x} \geq \mathbf{0} \}.$$

Convex duality

Start with a **primal** problem

$$\text{Val}(\mathbf{c}) = \inf_{\mathbf{x}} \{ \mathbf{c}^\top \mathbf{x} : \mathbf{A}\mathbf{x} = \mathbf{b}, \mathbf{x} \geq \mathbf{0} \}.$$

Obtain a **dual** problem

$$\text{Val}(\mathbf{c}) = \sup_{\boldsymbol{\mu}} \{ \mathbf{b}^\top \boldsymbol{\mu} : \mathbf{A}^\top \boldsymbol{\mu} \leq \mathbf{c} \}.$$

Convex duality

Start with a **primal** problem

$$\text{Val}(\mathbf{c}) = \inf_{\mathbf{x}} \{ \mathbf{c}^\top \mathbf{x} : \mathbf{A}\mathbf{x} = \mathbf{b}, \mathbf{x} \geq \mathbf{0} \}.$$

Obtain a **dual** problem

$$\text{Val}(\mathbf{c}) = \sup_{\boldsymbol{\mu}} \{ \mathbf{b}^\top \boldsymbol{\mu} : \mathbf{A}^\top \boldsymbol{\mu} \leq \mathbf{c} \}.$$

We will encounter constraints like

$$\text{Val}(\mathbf{c}) \geq L.$$

Convex duality

Start with a **primal** problem

$$\text{Val}(\mathbf{c}) = \inf_{\mathbf{x}} \{ \mathbf{c}^\top \mathbf{x} : \mathbf{A}\mathbf{x} = \mathbf{b}, \mathbf{x} \geq \mathbf{0} \}.$$

Obtain a **dual** problem

$$\text{Val}(\mathbf{c}) = \sup_{\boldsymbol{\mu}} \{ \mathbf{b}^\top \boldsymbol{\mu} : \mathbf{A}^\top \boldsymbol{\mu} \leq \mathbf{c} \}.$$

We will encounter constraints like

$$\text{Val}(\mathbf{c}) \geq L.$$

Write such a constraint as: *there exists* a $\boldsymbol{\mu}$ where

$$\mathbf{A}^\top \boldsymbol{\mu} \leq \mathbf{c} \quad \text{and} \quad \mathbf{b}^\top \boldsymbol{\mu} \geq L.$$

Nonnegativity and Optimization

Start with a function f and a set $X \subset \mathbb{R}^n$

$$\inf\{f(\mathbf{x}) : \mathbf{x} \text{ in } X\} = \sup\{\gamma : f(\mathbf{x}) \geq \gamma \text{ for all } \mathbf{x} \text{ in } X\}.$$

Nonnegativity and Optimization

Start with a function f and a set $X \subset \mathbb{R}^n$

$$\inf\{f(\mathbf{x}) : \mathbf{x} \text{ in } X\} = \sup\{\gamma : f(\mathbf{x}) \geq \gamma \text{ for all } \mathbf{x} \text{ in } X\}.$$

Plan of attack for producing lower bounds:

- 1 Express $f - \gamma = \sum_{i=1}^m c_i(\gamma) \cdot \phi_i$ for some basis functions ϕ_i .

Nonnegativity and Optimization

Start with a function f and a set $X \subset \mathbb{R}^n$

$$\inf\{f(\mathbf{x}) : \mathbf{x} \text{ in } X\} = \sup\{\gamma : f(\mathbf{x}) \geq \gamma \text{ for all } \mathbf{x} \text{ in } X\}.$$

Plan of attack for producing lower bounds:

- 1 Express $f - \gamma = \sum_{i=1}^m \textcolor{blue}{c}_i(\gamma) \cdot \phi_i$ for some basis functions ϕ_i .
- 2 Develop an **inner approximation**

$$\tilde{C}(\phi, X) \subset \left\{ \mathbf{c} : \sum_{i=1}^m c_i \phi_i(\mathbf{x}) \geq 0 \text{ for all } \mathbf{x} \text{ in } X \right\}.$$

Nonnegativity and Optimization

Start with a function f and a set $X \subset \mathbb{R}^n$

$$\inf\{f(\mathbf{x}) : \mathbf{x} \text{ in } X\} = \sup\{\gamma : f(\mathbf{x}) \geq \gamma \text{ for all } \mathbf{x} \text{ in } X\}.$$

Plan of attack for producing lower bounds:

- 1 Express $f - \gamma = \sum_{i=1}^m \mathbf{c}_i(\gamma) \cdot \phi_i$ for some basis functions ϕ_i .
- 2 Develop an **inner approximation**

$$\tilde{C}(\phi, X) \subset \left\{ \mathbf{c} : \sum_{i=1}^m c_i \phi_i(\mathbf{x}) \geq 0 \text{ for all } \mathbf{x} \text{ in } X \right\}.$$

- 3 Find largest γ so $\mathbf{c}(\gamma)$ belongs to $\tilde{C}(\phi, X)$.

Our functions of interest

polynomials

signomials

Our functions of interest

polynomials

signomials

Parameters α_i in \mathbb{N}^n , c_i in \mathbb{R} .

Using $x^{\alpha_i} = \prod_{j=1}^n x_j^{\alpha_{ij}}$,

$$x \mapsto \sum_{i=1}^m c_i x^{\alpha_i}.$$

Our functions of interest

*polynomials**signomials*Parameters α_i in \mathbb{N}^n , c_i in \mathbb{R} .Parameters α_i in \mathbb{R}^n , c_i in \mathbb{R} .Using $x^{\alpha_i} = \prod_{j=1}^n x_j^{\alpha_{ij}}$,

$$x \mapsto \sum_{i=1}^m c_i x^{\alpha_i}.$$

Our functions of interest

polynomials

Parameters α_i in \mathbb{N}^n , c_i in \mathbb{R} .

Using $x^{\alpha_i} = \prod_{j=1}^n x_j^{\alpha_{ij}}$,

$$\mathbf{x} \mapsto \sum_{i=1}^m c_i \mathbf{x}^{\alpha_i}.$$

signomials

Parameters α_i in \mathbb{R}^n , c_i in \mathbb{R} .

In “exponential form”,

$$\mathbf{x} \mapsto \sum_{i=1}^m c_i \exp(\alpha_i \cdot \mathbf{x}).$$

Our functions of interest

polynomials

Parameters α_i in \mathbb{N}^n , c_i in \mathbb{R} .

Using $x^{\alpha_i} = \prod_{j=1}^n x_j^{\alpha_{ij}}$,

$$\mathbf{x} \mapsto \sum_{i=1}^m c_i \mathbf{x}^{\alpha_i}.$$

Countable basis.

signomials

Parameters α_i in \mathbb{R}^n , c_i in \mathbb{R} .

In “exponential form”,

$$\mathbf{x} \mapsto \sum_{i=1}^m c_i \exp(\alpha_i \cdot \mathbf{x}).$$

Uncountable basis.

Our functions of interest

polynomials

Parameters α_i in \mathbb{N}^n , c_i in \mathbb{R} .

Using $x^{\alpha_i} = \prod_{j=1}^n x_j^{\alpha_{ij}}$,

$$\mathbf{x} \mapsto \sum_{i=1}^m c_i \mathbf{x}^{\alpha_i}.$$

Countable basis.

Complexity measured by **degree**
 $\max_i \alpha_{i1} + \dots + \alpha_{in}$.

signomials

Parameters α_i in \mathbb{R}^n , c_i in \mathbb{R} .

In “exponential form”,

$$\mathbf{x} \mapsto \sum_{i=1}^m c_i \exp(\alpha_i \cdot \mathbf{x}).$$

Uncountable basis.

Complexity measured by
number of terms m .

How we think of signomials

Signomials are often written $\mathbf{y} \mapsto \sum_{i=1}^m c_i \mathbf{y}^{\alpha_i}$, with $\mathbf{y} \in \mathbb{R}_{++}^n$.

The *exponential form* has a powerful connection to convexity.

How we think of signomials

Signomials are often written $\mathbf{y} \mapsto \sum_{i=1}^m c_i \mathbf{y}^{\alpha_i}$, with $\mathbf{y} \in \mathbb{R}_{++}^n$.

The *exponential form* has a powerful connection to convexity.

One use of your existing intuition:

- Pick an “interesting” polynomial p .
- Define $f(z) = p(\exp(z) - \exp(-z))$.
- f will behave similarly to p , near 0 .

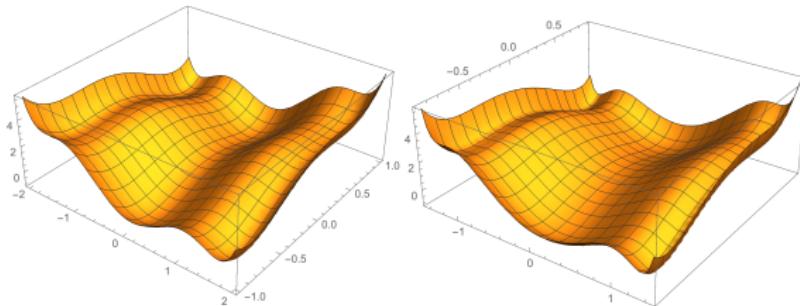
How we think of signomials

Signomials are often written $\mathbf{y} \mapsto \sum_{i=1}^m c_i \mathbf{y}^{\alpha_i}$, with $\mathbf{y} \in \mathbb{R}_{++}^n$.

The *exponential form* has a powerful connection to convexity.

One use of your existing intuition:

- Pick an “interesting” polynomial p .
- Define $f(z) = p(\exp(z) - \exp(-z))$.
- f will behave similarly to p , near 0.



Outline for the talk

This talk is about **“SAGE certificates.”**

Outline for the talk

This talk is about “**SAGE certificates**.”

1 SAGE signomials

Definition → Representation → Example.

Outline for the talk

This talk is about “**SAGE certificates**.”

1 SAGE signomials

Definition → Representation → Example.

2 Signomial optimization

- Simple “SAGE relaxations.”
- Partial dualization.
- Two examples.

Outline for the talk

This talk is about “**SAGE certificates**.”

1 SAGE signomials

Definition → Representation → Example.

2 Signomial optimization

- Simple “SAGE relaxations.”
- Partial dualization.
- Two examples.

3 SAGE polynomials

Definition → Example → Representation.

The signomial X -nonnegativity cones

The X -nonnegativity cone for signomials over exponents α :

$$C_{\text{NNS}}(\alpha, X) \doteq \left\{ \mathbf{c} : \sum_{i=1}^m c_i \exp(\alpha_i \cdot \mathbf{x}) \geq 0 \text{ for all } \mathbf{x} \text{ in } X \right\}.$$

The signomial X -nonnegativity cones

The X -nonnegativity cone for signomials over exponents α :

$$C_{\text{NNS}}(\alpha, X) \doteq \left\{ \mathbf{c} : \sum_{i=1}^m c_i \exp(\alpha_i \cdot \mathbf{x}) \geq 0 \text{ for all } \mathbf{x} \text{ in } X \right\}.$$

If

$$f(\mathbf{x}) = c_1 \exp(\mathbf{0} \cdot \mathbf{x}) + c_2 \exp(\alpha_2 \cdot \mathbf{x}) + \cdots + c_m \exp(\alpha_m \cdot \mathbf{x}),$$

then

$$\inf_{\mathbf{x} \in X} f(\mathbf{x}) = \sup \{ \gamma : \mathbf{c} - (\gamma, 0, \dots, 0) \in C_{\text{NNS}}(\alpha, X) \}.$$

$$X\text{-SAGE} \Rightarrow X\text{-nonnegativity}$$

Definition. A signomial which is nonnegative over X and which has at most one negative coefficient is an “ X -AGE function.”

$$X\text{-SAGE} \Rightarrow X\text{-nonnegativity}$$

Definition. A signomial which is nonnegative over X and which has at most one negative coefficient is an “ X -AGE function.”

We take sums of X -AGE cones to obtain the **X -SAGE cone**

$$C_{\text{SAGE}}(\boldsymbol{\alpha}, X) = \sum_{k=1}^m \underbrace{\{ \mathbf{c} : \mathbf{c}_{\setminus k} \geq \mathbf{0} \text{ and } \mathbf{c} \text{ in } C_{\text{NNS}}(\boldsymbol{\alpha}, X) \}}_{k^{\text{th}} \text{ } X\text{-AGE cone}}.$$

$$X\text{-SAGE} \Rightarrow X\text{-nonnegativity}$$

Definition. A signomial which is nonnegative over X and which has at most one negative coefficient is an “ X -AGE function.”

We take sums of X -AGE cones to obtain the **X -SAGE cone**

$$C_{\text{SAGE}}(\alpha, X) = \sum_{k=1}^m \underbrace{\{c : c_{\setminus k} \geq \mathbf{0} \text{ and } c \text{ in } C_{\text{NNS}}(\alpha, X)\}}_{k^{\text{th}} \text{ } X\text{-AGE cone}}.$$

Crucial question: How to represent the AGE cones?

The convex duality behind AGE cones

Fix α in $\mathbb{R}^{m \times n}$, and c in \mathbb{R}^m satisfying $c_{\setminus k} \geq 0$. Convex $X \subset \mathbb{R}^n$.

The convex duality behind AGE cones

Fix α in $\mathbb{R}^{m \times n}$, and c in \mathbb{R}^m satisfying $c_{\setminus k} \geq 0$. Convex $X \subset \mathbb{R}^n$.

Divide out the problematic exponential, and rearrange terms:

$$\sum_{i=1}^m c_i \exp(\alpha_i \cdot x) \geq 0 \Leftrightarrow \begin{aligned} \sum_{i=1}^m c_i \exp([\alpha_i - \alpha_k] \cdot x) &\geq 0 \\ \sum_{i \neq k} c_i \exp([\alpha_i - \alpha_k] \cdot x) &\geq -c_k. \end{aligned}$$

The convex duality behind AGE cones

Fix α in $\mathbb{R}^{m \times n}$, and c in \mathbb{R}^m satisfying $c_{\setminus k} \geq 0$. Convex $X \subset \mathbb{R}^n$.

Divide out the problematic exponential, and rearrange terms:

$$\sum_{i=1}^m c_i \exp(\alpha_i \cdot x) \geq 0 \Leftrightarrow \begin{aligned} \sum_{i=1}^m c_i \exp([\alpha_i - \alpha_k] \cdot x) &\geq 0 \\ \sum_{i \neq k} c_i \exp([\alpha_i - \alpha_k] \cdot x) &\geq -c_k. \end{aligned}$$

The nonnegativity condition

$$\inf \left\{ \sum_{i \neq k} c_i \exp([\alpha_i - \alpha_k] \cdot x) : x \text{ in } X \right\} \geq -c_k$$

holds **if and only if**

The convex duality behind AGE cones

Fix α in $\mathbb{R}^{m \times n}$, and c in \mathbb{R}^m satisfying $c_{\setminus k} \geq 0$. Convex $X \subset \mathbb{R}^n$.

Divide out the problematic exponential, and rearrange terms:

$$\begin{aligned} \sum_{i=1}^m c_i \exp(\alpha_i \cdot x) \geq 0 \Leftrightarrow \sum_{i=1}^m c_i \exp([\alpha_i - \alpha_k] \cdot x) \geq 0 \\ \sum_{i \neq k} c_i \exp([\alpha_i - \alpha_k] \cdot x) \geq -c_k. \end{aligned}$$

The nonnegativity condition

$$\inf \left\{ \sum_{i \neq k} c_i \exp([\alpha_i - \alpha_k] \cdot x) : x \text{ in } X \right\} \geq -c_k$$

holds **if and only if** there exists ν in \mathbb{R}^{m-1} , λ in \mathbb{R}^n satisfying

The convex duality behind AGE cones

Fix α in $\mathbb{R}^{m \times n}$, and c in \mathbb{R}^m satisfying $c_{\setminus k} \geq 0$. Convex $X \subset \mathbb{R}^n$.

Divide out the problematic exponential, and rearrange terms:

$$\begin{aligned} \sum_{i=1}^m c_i \exp(\alpha_i \cdot x) \geq 0 \Leftrightarrow \sum_{i=1}^m c_i \exp([\alpha_i - \alpha_k] \cdot x) \geq 0 \\ \sum_{i \neq k} c_i \exp([\alpha_i - \alpha_k] \cdot x) \geq -c_k. \end{aligned}$$

The nonnegativity condition

$$\inf \left\{ \sum_{i \neq k} c_i \exp([\alpha_i - \alpha_k] \cdot x) : x \text{ in } X \right\} \geq -c_k$$

holds **if and only if** there exists ν in \mathbb{R}^{m-1} , λ in \mathbb{R}^n satisfying

$$\begin{aligned} [\mathbf{1}\alpha_k - \alpha_{\setminus k}]^\top \nu = \lambda \quad \text{and} \\ \sigma_X(\lambda) + D(\nu, c_{\setminus k}) - \nu^\top \mathbf{1} \leq c_k. \end{aligned}$$

Tractability of X -SAGE cones

There are two constraints in an AGE cone:

- $[\mathbf{1}\alpha_k - \alpha_{\setminus k}]^\top \boldsymbol{\nu} = \boldsymbol{\lambda}$, and
- $\sigma_X(\boldsymbol{\lambda}) + D(\boldsymbol{\nu}, \mathbf{c}_{\setminus k}) - \boldsymbol{\nu}^\top \mathbf{1} \leq c_k$.

Support function $\sigma_X(\boldsymbol{\lambda}) = \sup\{\boldsymbol{\lambda}^\top \mathbf{x} : \mathbf{x} \text{ in } X\}$ always convex.

Tractability of X -SAGE cones

There are two constraints in an AGE cone:

- $[\mathbf{1}\boldsymbol{\alpha}_k - \boldsymbol{\alpha}_{\setminus k}]^\top \boldsymbol{\nu} = \boldsymbol{\lambda}$, and
- $\sigma_X(\boldsymbol{\lambda}) + D(\boldsymbol{\nu}, \mathbf{c}_{\setminus k}) - \boldsymbol{\nu}^\top \mathbf{1} \leq c_k$.

Support function $\sigma_X(\boldsymbol{\lambda}) = \sup\{\boldsymbol{\lambda}^\top \mathbf{x} : \mathbf{x} \text{ in } X\}$ always convex.

When does it have a closed form? Examples include ...

$$X = \mathbb{R}^n \quad \Rightarrow \quad \sigma_X(\boldsymbol{\lambda}) = \begin{cases} 0 & \text{if } \boldsymbol{\lambda} = \mathbf{0} \\ +\infty & \text{if } \boldsymbol{\lambda} \neq \mathbf{0} \end{cases}$$

Tractability of X -SAGE cones

There are two constraints in an AGE cone:

- $[\mathbf{1}\alpha_k - \alpha_{\setminus k}]^\top \boldsymbol{\nu} = \boldsymbol{\lambda}$, and
- $\sigma_X(\boldsymbol{\lambda}) + D(\boldsymbol{\nu}, \mathbf{c}_{\setminus k}) - \boldsymbol{\nu}^\top \mathbf{1} \leq c_k$.

Support function $\sigma_X(\boldsymbol{\lambda}) = \sup\{\boldsymbol{\lambda}^\top \mathbf{x} : \mathbf{x} \text{ in } X\}$ always convex.

When does it have a closed form? Examples include ...

$$X = \{\mathbf{x} : \|\mathbf{x} - \mathbf{a}\| \leq r\} \quad \Rightarrow \quad \sigma_X(\boldsymbol{\lambda}) = \boldsymbol{\lambda}^\top \mathbf{a} + r\|\boldsymbol{\lambda}\|_*$$

Tractability of X -SAGE cones

There are two constraints in an AGE cone:

- $[\mathbf{1}\alpha_k - \alpha_{\setminus k}]^\top \boldsymbol{\nu} = \boldsymbol{\lambda}$, and
- $\sigma_X(\boldsymbol{\lambda}) + D(\boldsymbol{\nu}, \mathbf{c}_{\setminus k}) - \boldsymbol{\nu}^\top \mathbf{1} \leq c_k$.

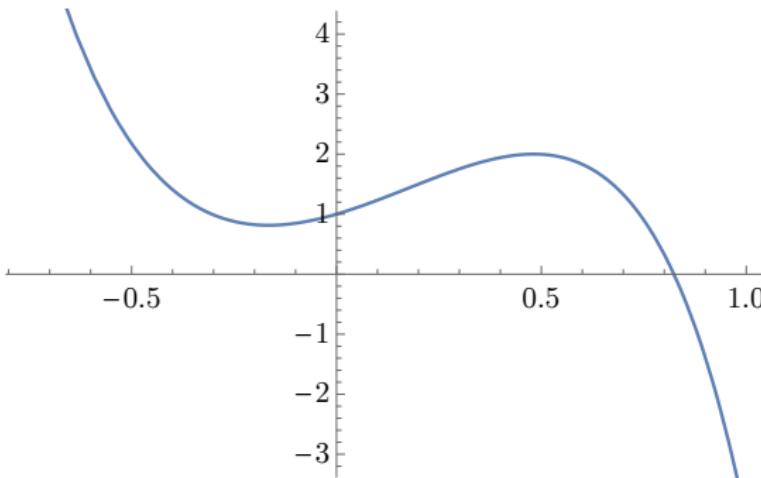
Support function $\sigma_X(\boldsymbol{\lambda}) = \sup\{\boldsymbol{\lambda}^\top \mathbf{x} : \mathbf{x} \text{ in } X\}$ always convex.

When is it *tractable*?

Whenever X is tractable.

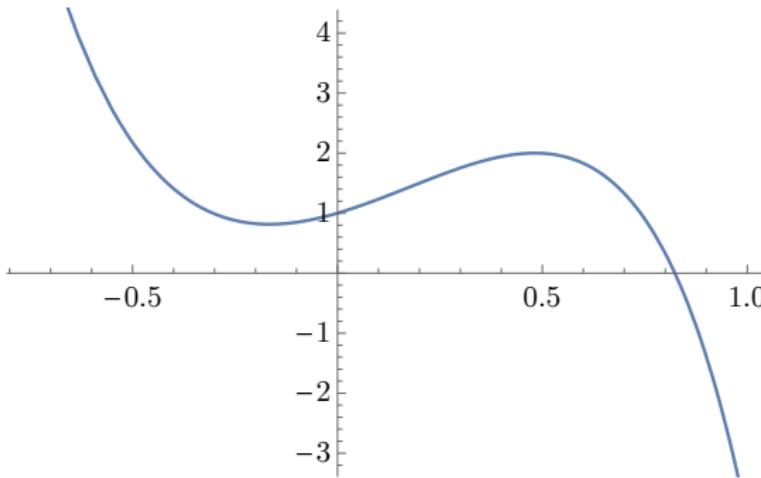
A univariate example

$$f(x) = e^{-3x} + e^{-2x} + 4e^x + e^{2x} - 4e^{-x} - 1 - e^{3x} \text{ over } x \leq 0$$



A univariate example

$$f(x) = e^{-3x} + e^{-2x} + 4e^x + e^{2x} - 4e^{-x} - 1 - e^{3x} \text{ over } x \leq 0$$



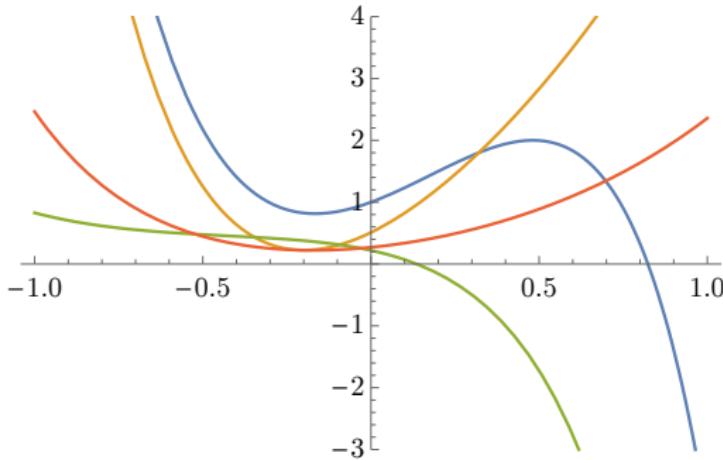
$$f_1(x) = 0.88 \cdot e^{-3x} + 0.82 \cdot e^{-2x} + 2.69 \cdot e^x + 0.12 \cdot e^{2x} - 4 \cdot e^{-x}$$

$$f_2(x) = 0.10 \cdot e^{-3x} + 0.15 \cdot e^{-2x} + 0.90 \cdot e^x + 0.12 \cdot e^{2x} - 1$$

$$f_3(x) = 0.02 \cdot e^{-3x} + 0.03 \cdot e^{-2x} + 0.41 \cdot e^x + 0.76 \cdot e^{2x} - e^{3x}$$

A univariate example

$$f(x) = e^{-3x} + e^{-2x} + 4e^x + e^{2x} - 4e^{-x} - 1 - e^{3x} \text{ over } x \leq 0$$



$$f_1(x) = 0.88 \cdot e^{-3x} + 0.82 \cdot e^{-2x} + 2.69 \cdot e^x + 0.12 \cdot e^{2x} - 4 \cdot e^{-x}$$

$$f_2(x) = 0.10 \cdot e^{-3x} + 0.15 \cdot e^{-2x} + 0.90 \cdot e^x + 0.12 \cdot e^{2x} - 1$$

$$f_3(x) = 0.02 \cdot e^{-3x} + 0.03 \cdot e^{-2x} + 0.41 \cdot e^x + 0.76 \cdot e^{2x} - e^{3x}$$

Optimization.

Simple SAGE relaxations

Consider $f(\mathbf{x}) = \sum_{i=1}^m c_i \exp(\boldsymbol{\alpha}_i \cdot \mathbf{x})$ with $\boldsymbol{\alpha}_1 = \mathbf{0}$.

$$\inf\{f(\mathbf{x}) : \mathbf{x} \text{ in } X\} = \sup\{\gamma : \mathbf{c} - \gamma \mathbf{e}_1 \text{ in } C_{\text{NNS}}(\boldsymbol{\alpha}, X)\}$$

$$\geq \sup\{\gamma : \mathbf{c} - \gamma \mathbf{e}_1 \text{ in } C_{\text{SAGE}}(\boldsymbol{\alpha}, X)\}$$

$$= \inf \left\{ \mathbf{c}^\top \mathbf{v} : \begin{array}{l} \mathbf{v} \text{ in } C_{\text{SAGE}}(\boldsymbol{\alpha}, X)^\dagger \\ \text{satisfies } \mathbf{v} \cdot \mathbf{e}_1 = 1 \end{array} \right\}$$

What about [solution recovery](#)?

Simple SAGE relaxations

Consider $f(\mathbf{x}) = \sum_{i=1}^m c_i \exp(\boldsymbol{\alpha}_i \cdot \mathbf{x})$ with $\boldsymbol{\alpha}_1 = \mathbf{0}$.

$$\inf\{f(\mathbf{x}) : \mathbf{x} \text{ in } X\} = \sup\{\gamma : \mathbf{c} - \gamma \mathbf{e}_1 \text{ in } C_{\text{NNS}}(\boldsymbol{\alpha}, X)\}$$

$$\geq \sup\{\gamma : \mathbf{c} - \gamma \mathbf{e}_1 \text{ in } C_{\text{SAGE}}(\boldsymbol{\alpha}, X)\}$$

$$= \inf \left\{ \mathbf{c}^\top \mathbf{v} : \begin{array}{l} \mathbf{v} \text{ in } C_{\text{SAGE}}(\boldsymbol{\alpha}, X)^\dagger \\ \text{satisfies } \mathbf{v} \cdot \mathbf{e}_1 = 1 \end{array} \right\}$$

What about **solution recovery**? When X is convex, we have

$$\begin{aligned} C_{\text{SAGE}}(\boldsymbol{\alpha}, X)^\dagger = \text{cl}\{ \mathbf{v} : \text{some } \mathbf{z}_1, \dots, \mathbf{z}_m \text{ in } \mathbb{R}^n \text{ satisfy} \\ v_k \log(\mathbf{v}/v_k) \geq [\boldsymbol{\alpha} - \mathbf{1}\boldsymbol{\alpha}_k] \mathbf{z}_k \\ \text{and } \mathbf{z}_k/v_k \in X \text{ for all } k \text{ in } [m] \}. \end{aligned}$$

An example in \mathbb{R}^3

Minimize

$$f(\mathbf{x}) = 0.5 \exp(x_1 - x_2) - \exp x_1 - 5 \exp(-x_2)$$

over

$$\begin{aligned} X = \{ \mathbf{x} : \log 70 \leq x_1 \leq \log 150, \\ \log 1.0 \leq x_2 \leq \log 30, \\ \log 0.5 \leq x_3 \leq \log 21 \\ \exp(x_2 - x_3) + \exp x_2 + 0.05 \exp(x_1 + x_3) \leq 100 \}. \end{aligned}$$

An example in \mathbb{R}^3

Minimize

$$f(\mathbf{x}) = 0.5 \exp(x_1 - x_2) - \exp x_1 - 5 \exp(-x_2)$$

over

$$\begin{aligned} X = \{ \mathbf{x} : \log 70 \leq x_1 \leq \log 150, \\ \log 1.0 \leq x_2 \leq \log 30, \\ \log 0.5 \leq x_3 \leq \log 21 \\ \exp(x_2 - x_3) + \exp x_2 + 0.05 \exp(x_1 + x_3) \leq 100 \}. \end{aligned}$$

Compute $f_X^{\text{SAGE}} = -147.85713 \leq f_X^{\star}$,

An example in \mathbb{R}^3

Minimize

$$f(\mathbf{x}) = 0.5 \exp(x_1 - x_2) - \exp x_1 - 5 \exp(-x_2)$$

over

$$\begin{aligned} X = \{ \mathbf{x} : \log 70 \leq x_1 \leq \log 150, \\ \log 1.0 \leq x_2 \leq \log 30, \\ \log 0.5 \leq x_3 \leq \log 21 \\ \exp(x_2 - x_3) + \exp x_2 + 0.05 \exp(x_1 + x_3) \leq 100 \}. \end{aligned}$$

Compute $f_X^{\text{SAGE}} = -147.85713 \leq f_X^*$, recover feasible

$$\mathbf{x}^* = (5.01063529, 3.40119660, -0.48450710)$$

satisfying $f(\mathbf{x}^*) = -147.66666$.

An example in \mathbb{R}^3

Minimize

$$f(\mathbf{x}) = 0.5 \exp(x_1 - x_2) - \exp x_1 - 5 \exp(-x_2)$$

over

$$\begin{aligned} X = \{ \mathbf{x} : \log 70 \leq x_1 \leq \log 150, \\ \log 1.0 \leq x_2 \leq \log 30, \\ \log 0.5 \leq x_3 \leq \log 21 \\ \exp(x_2 - x_3) + \exp x_2 + 0.05 \exp(x_1 + x_3) \leq 100 \}. \end{aligned}$$

Compute $f_X^{\text{SAGE}} = -147.85713 \leq f_X^*$, recover feasible

$$\mathbf{x}^* = (5.01063529, 3.40119660, -0.48450710)$$

satisfying $f(\mathbf{x}^*) = -147.66666$. *This is actually optimal!*

Nonconvex constraints

Q: What should we do when some constraints are nonconvex?

Nonconvex constraints

Q: What should we do when some constraints are nonconvex?

A: Combine X -SAGE certificates with Lagrangian relaxations.

Nonconvex constraints

Q: What should we do when some constraints are nonconvex?

A: Combine X -SAGE certificates with Lagrangian relaxations.

Concretely, suppose we want to minimize f over

$$\Omega \doteq X \cap \{\mathbf{x} : g(\mathbf{x}) \leq \mathbf{0}\}$$

where X is convex, but g_1, \dots, g_k are nonconvex signomials.

Nonconvex constraints

Q: What should we do when some constraints are nonconvex?

A: Combine X -SAGE certificates with Lagrangian relaxations.

Concretely, suppose we want to minimize f over

$$\Omega \doteq X \cap \{\mathbf{x} : g(\mathbf{x}) \leq \mathbf{0}\}$$

where X is convex, but g_1, \dots, g_k are nonconvex signomials.

Then, if $\lambda_1, \dots, \lambda_k$ are nonnegative dual variables, we have

$$\inf_{\mathbf{x} \in \Omega} f(\mathbf{x}) \geq \sup \left\{ \gamma : f + \sum_{i=1}^k \lambda_i g_i - \gamma \text{ is } X\text{-SAGE} \right\}.$$

The SimPleAC aircraft design problem

From Warren Hoburg's PhD thesis.

Problem statistics:

- 140 variables.
- 89 inequality constraints (1 nonconvex).
- 67 equality constraints (15 nonconvex).

Performance of the most basic SAGE relaxation:

- bound “ $\text{cost} \geq 2957$ ” (roughly match a known solution).
- MOSEK solves in two seconds, on a six year old laptop.
- solution recovery fails (numerical issues).

SAGE polynomials

X -nonnegative and X -AGE polynomials

Recall our standard notation $\mathbf{x}^{\alpha_i} \doteq \prod_{j=1}^n x_j^{\alpha_{ij}}$.

The matrix α and a set $X \subset \mathbb{R}^n$ induce a nonnegativity cone

$$C_{\text{NNP}}(\alpha, X) = \{ \mathbf{c} : c_1 \mathbf{x}^{\alpha_1} + \cdots + c_m \mathbf{x}^{\alpha_m} \geq 0 \text{ for all } \mathbf{x} \text{ in } X \}.$$

X -nonnegative and X -AGE polynomials

Recall our standard notation $\mathbf{x}^{\alpha_i} \doteq \prod_{j=1}^n x_j^{\alpha_{ij}}$.

The matrix α and a set $X \subset \mathbb{R}^n$ induce a nonnegativity cone

$$C_{\text{NNP}}(\alpha, X) = \{ \mathbf{c} : c_1 \mathbf{x}^{\alpha_1} + \cdots + c_m \mathbf{x}^{\alpha_m} \geq 0 \text{ for all } \mathbf{x} \text{ in } X \}.$$

Def. $f(\mathbf{x}) = c_1 \mathbf{x}^{\alpha_1} + \cdots + c_m \mathbf{x}^{\alpha_m}$ is an **X -AGE polynomial** if

- 1 \mathbf{c} belongs to $C_{\text{NNP}}(\alpha, X)$, and
- 2 at most one “ k ” has $c_k \mathbf{x}^{\alpha_k} < 0$ for some $\mathbf{x} \in X$.

A symbolic example

Consider $f(\mathbf{x}) = n - \sum_{i=1}^n \prod_{j \in [n] \setminus \{i\}} x_j$ over $X = \{-1, 1\}^n$.

Let's prove that f is X -nonnegative.

A symbolic example

Consider $f(\mathbf{x}) = n - \sum_{i=1}^n \prod_{j \in [n] \setminus \{i\}} x_j$ over $X = \{-1, 1\}^n$.

Let's prove that f is X -nonnegative.

- 1 Note that $\mathbf{x} \in \{-1, 1\}^n$ implies $\prod_{j \neq i} x_j \leq 1$.

A symbolic example

Consider $f(\mathbf{x}) = n - \sum_{i=1}^n \prod_{j \in [n] \setminus \{i\}} x_j$ over $X = \{-1, 1\}^n$.

Let's prove that f is X -nonnegative.

- 1 Note that $\mathbf{x} \in \{-1, 1\}^n$ implies $\prod_{j \neq i} x_j \leq 1$.
- 2 Therefore $f_i(\mathbf{x}) = 1 - \prod_{j \neq i} x_j$ are X -AGE.

A symbolic example

Consider $f(\mathbf{x}) = n - \sum_{i=1}^n \prod_{j \in [n] \setminus \{i\}} x_j$ over $X = \{-1, 1\}^n$.

Let's prove that f is X -nonnegative.

- 1 Note that $\mathbf{x} \in \{-1, 1\}^n$ implies $\prod_{j \neq i} x_j \leq 1$.
- 2 Therefore $f_i(\mathbf{x}) = 1 - \prod_{j \neq i} x_j$ are X -AGE.
- 3 Since $f = \sum_{i=1}^n f_i$, conclude f is X -SAGE.

The representation problem

The cone of coefficients for X -**SAGE polynomials** is given by

$$C_{\text{SAGE}}^{\text{POLY}}(\boldsymbol{\alpha}, X) = \sum_{k=1}^m \left\{ \mathbf{c} \mid \begin{array}{l} \mathbf{c} \text{ in } C_{\text{NNP}}(\boldsymbol{\alpha}, X), \text{ and for} \\ i \neq k, \mathbf{x} \in X \Rightarrow c_i \mathbf{x}^{\boldsymbol{\alpha}_i} \geq 0 \end{array} \right\}.$$

The representation problem

The cone of coefficients for X -**SAGE polynomials** is given by

$$C_{\text{SAGE}}^{\text{POLY}}(\boldsymbol{\alpha}, X) = \sum_{k=1}^m \left\{ \boldsymbol{c} \mid \begin{array}{l} \boldsymbol{c} \text{ in } C_{\text{NNP}}(\boldsymbol{\alpha}, X), \text{ and for} \\ i \neq k, \boldsymbol{x} \in X \Rightarrow c_i \boldsymbol{x}^{\boldsymbol{\alpha}_i} \geq 0 \end{array} \right\}.$$

- This definition cares about the behavior of monomials.

The representation problem

The cone of coefficients for X -**SAGE polynomials** is given by

$$C_{\text{SAGE}}^{\text{POLY}}(\alpha, X) = \sum_{k=1}^m \left\{ \mathbf{c} \mid \begin{array}{l} \mathbf{c} \text{ in } C_{\text{NNP}}(\alpha, X), \text{ and for} \\ i \neq k, \mathbf{x} \in X \Rightarrow c_i \mathbf{x}^{\alpha_i} \geq 0 \end{array} \right\}.$$

- This definition cares about the behavior of monomials.
- SAGE signomials put monomials front and center.

The representation problem

The cone of coefficients for X -**SAGE polynomials** is given by

$$C_{\text{SAGE}}^{\text{POLY}}(\boldsymbol{\alpha}, X) = \sum_{k=1}^m \left\{ \mathbf{c} \mid \begin{array}{l} \mathbf{c} \text{ in } C_{\text{NNP}}(\boldsymbol{\alpha}, X), \text{ and for} \\ i \neq k, \mathbf{x} \in X \Rightarrow c_i \mathbf{x}^{\boldsymbol{\alpha}_i} \geq 0 \end{array} \right\}.$$

- This definition cares about the behavior of monomials.
- SAGE signomials put monomials front and center.
- Monomials " $\mathbf{x}^{\boldsymbol{\alpha}_i}$ " are quite different from " $\exp(\boldsymbol{\alpha}_i \cdot \mathbf{x})$ ".

Representation: the single-orthant case

Consider $X \subset \mathbb{R}_+^n$, and define $X_{++} \doteq X \cap \mathbb{R}_{++}^n$.

$$C_{\text{SAGE}}^{\text{POLY}}(\boldsymbol{\alpha}, X) = \sum_{k=1}^m \left\{ \boldsymbol{c} \mid \begin{array}{l} \boldsymbol{c} \text{ in } C_{\text{NNP}}(\boldsymbol{\alpha}, X), \text{ and for} \\ i \neq k, \boldsymbol{x} \in X \Rightarrow c_i \boldsymbol{x}^{\boldsymbol{\alpha}_i} \geq 0 \end{array} \right\}$$

Representation: the single-orthant case

Consider $X \subset \mathbb{R}_+^n$, and define $X_{++} \doteq X \cap \mathbb{R}_{++}^n$.

$$C_{\text{SAGE}}^{\text{POLY}}(\boldsymbol{\alpha}, X) = \sum_{k=1}^m \left\{ \boldsymbol{c} \mid \begin{array}{l} \boldsymbol{c} \text{ in } C_{\text{NNP}}(\boldsymbol{\alpha}, X), \text{ and for} \\ i \neq k, \boldsymbol{x} \in X \Rightarrow c_i \boldsymbol{x}^{\boldsymbol{\alpha}_i} \geq 0 \end{array} \right\}$$

Fact 1. If $X = \text{cl } X_{++}$, then $C_{\text{NNP}}(\boldsymbol{\alpha}, X) = C_{\text{NNS}}(\boldsymbol{\alpha}, \log X_{++})$.

Representation: the single-orthant case

Consider $X \subset \mathbb{R}_+^n$, and define $X_{++} \doteq X \cap \mathbb{R}_{++}^n$.

$$C_{\text{SAGE}}^{\text{POLY}}(\boldsymbol{\alpha}, X) = \sum_{k=1}^m \left\{ \boldsymbol{c} \mid \begin{array}{l} \text{c in } C_{\text{NNP}}(\boldsymbol{\alpha}, X), \text{ and for} \\ i \neq k, \boldsymbol{x} \in X \Rightarrow c_i \boldsymbol{x}^{\boldsymbol{\alpha}_i} \geq 0 \end{array} \right\}$$

Fact 1. If $X = \text{cl } X_{++}$, then $C_{\text{NNP}}(\boldsymbol{\alpha}, X) = C_{\text{NNS}}(\boldsymbol{\alpha}, \log X_{++})$.

Fact 2. Since $X \subset \mathbb{R}_+^n$, “ $c_i \boldsymbol{x}^{\boldsymbol{\alpha}_i} \geq 0 \ \forall \boldsymbol{x} \in X$ ” reduces to $c_i \geq 0$.

Representation: the single-orthant case

Consider $X \subset \mathbb{R}_+^n$, and define $X_{++} \doteq X \cap \mathbb{R}_{++}^n$.

$$C_{\text{SAGE}}^{\text{POLY}}(\boldsymbol{\alpha}, X) = \sum_{k=1}^m \left\{ \boldsymbol{c} \mid \begin{array}{l} \boldsymbol{c} \text{ in } C_{\text{NNP}}(\boldsymbol{\alpha}, X), \text{ and for} \\ i \neq k, \boldsymbol{x} \in X \Rightarrow c_i \boldsymbol{x}^{\boldsymbol{\alpha}_i} \geq 0 \end{array} \right\}$$

Fact 1. If $X = \text{cl } X_{++}$, then $C_{\text{NNP}}(\boldsymbol{\alpha}, X) = C_{\text{NNS}}(\boldsymbol{\alpha}, \log X_{++})$.

Fact 2. Since $X \subset \mathbb{R}_+^n$, “ $c_i \boldsymbol{x}^{\boldsymbol{\alpha}_i} \geq 0 \ \forall \boldsymbol{x} \in X$ ” reduces to $c_i \geq 0$.

$$\sum_{k=1}^m \left\{ \boldsymbol{c} \mid \begin{array}{l} \boldsymbol{c} \text{ in } C_{\text{NNS}}(\boldsymbol{\alpha}, \log X_{++}), \\ \text{and } c_i \geq 0 \text{ for all } i \neq k \end{array} \right\} = C_{\text{SAGE}}(\boldsymbol{\alpha}, \log X_{++})$$

Representation: sign-symmetry

Consider $X \subset \mathbb{R}^n$ which satisfies

- 1 invariance under reflection about $\{x : x_i = 0\}$,
- 2 and $X \cap \mathbb{R}_+^n = \text{cl } X_{++}$.

For example, $X = \{-1, 1\}^n$.

Representation: sign-symmetry

Consider $X \subset \mathbb{R}^n$ which satisfies

- 1 invariance under reflection about $\{x : x_i = 0\}$,
- 2 and $X \cap \mathbb{R}_+^n = \text{cl } X_{++}$.

For example, $X = \{-1, 1\}^n$.

It can subsequently be shown that

$C_{\text{SAGE}}^{\text{POLY}}(\alpha, X) = \{c : \text{some } \hat{c} \in C_{\text{SAGE}}(\alpha, \log X_{++}) \text{ satisfies}$

$$\hat{c}_i = c_i \text{ whenever } \alpha_i \text{ is in } 2\mathbb{N}^n, \text{ and}$$

$$\hat{c}_i \leq -|c_i| \text{ whenever } \alpha_i \text{ is not in } 2\mathbb{N}^n\}.$$

Representation: sign-symmetry

Consider $X \subset \mathbb{R}^n$ which satisfies

- 1 invariance under reflection about $\{x : x_i = 0\}$,
- 2 and $X \cap \mathbb{R}_+^n = \text{cl } X_{++}$.

For example, $X = \{-1, 1\}^n$.

It can subsequently be shown that

$C_{\text{SAGE}}^{\text{POLY}}(\alpha, X) = \{c : \text{some } \hat{c} \in C_{\text{SAGE}}(\alpha, \log X_{++}) \text{ satisfies}$
 $\hat{c}_i = c_i \text{ whenever } \alpha_i \text{ is in } 2\mathbb{N}^n, \text{ and}$
 $\hat{c}_i \leq -|c_i| \text{ whenever } \alpha_i \text{ is not in } 2\mathbb{N}^n\}$.

If α_i isn't even, then some $x_1, x_2 \in X$ satisfy $x_1^{\alpha_i} < 0 < x_2^{\alpha_i}$.

Log-log convexity

For what $X \subset \mathbb{R}_{++}^n$ is $\log X$ convex?

Log-log convexity

For what $X \subset \mathbb{R}_{++}^n$ is $\log X$ convex?

A function g is **log-log convex** on $D \subset \mathbb{R}_{++}^n$ when

- $\log D$ is a convex set, and
- $\log(x) \mapsto \log g(x)$ is convex function.

Such functions are sometimes called *geometrically convex*.

Log-log convexity

For what $X \subset \mathbb{R}_{++}^n$ is $\log X$ convex?

A function g is **log-log convex** on $D \subset \mathbb{R}_{++}^n$ when

- $\log D$ is a convex set, and
- $\log(x) \mapsto \log g(x)$ is convex function.

Such functions are sometimes called *geometrically convex*.

Studied by Montel (1928) and Niculescu (2000), among others.

If g_1, \dots, g_k are log-log convex on a box $B \subset \mathbb{R}_{++}^n$, then

$\log\{(x, \mathbf{t}) : x \in B, \mathbf{t} \in \mathbb{R}_{++}^k, g(x) \leq \mathbf{t}\} \subset \mathbb{R}^{n+k}$ is convex.

Log-log convexity: examples

With domains $D = \mathbb{R}_{++}^n$:

$$g(\mathbf{x}) = \max\{x_1, \dots, x_n\}$$

Log-log convexity: examples

With domains $D = \mathbb{R}_{++}^n$:

$$g(\mathbf{x}) = \max\{x_1, \dots, x_n\}$$

$$g(\mathbf{x}) = x_1^{a_1} \cdots x_n^{a_n}$$

Log-log convexity: examples

With domains $D = \mathbb{R}_{++}^n$:

$$g(\mathbf{x}) = \max\{x_1, \dots, x_n\}$$

$$g(\mathbf{x}) = x_1^{a_1} \cdots x_n^{a_n}$$

$$g(x) = \left(\int_x^{\infty} e^{-t^2} dt \right)^{-1}$$

Log-log convexity: examples

With domains $D = \mathbb{R}_{++}^n$:

$$g(\mathbf{x}) = \max\{x_1, \dots, x_n\}$$

$$g(\mathbf{x}) = x_1^{a_1} \cdots x_n^{a_n}$$

With more restricted domains:

$$x \mapsto (-x \log x)^{-1} \quad D = (0, 1)$$

$$g(x) = \left(\int_x^{\infty} e^{-t^2} dt \right)^{-1}$$

Log-log convexity: examples

With domains $D = \mathbb{R}_{++}^n$:

$$g(\mathbf{x}) = \max\{x_1, \dots, x_n\}$$

$$g(\mathbf{x}) = x_1^{a_1} \cdots x_n^{a_n}$$

$$g(x) = \left(\int_x^{\infty} e^{-t^2} dt \right)^{-1}$$

With more restricted domains:

$$x \mapsto (-x \log x)^{-1} \quad D = (0, 1)$$

$$\mathbf{X} \mapsto (\mathbf{I} - \mathbf{X})^{-1}$$

$$D = \{\mathbf{X} \in \mathbb{R}_{++}^{n \times n} : \rho(\mathbf{X}) < 1\}$$

Log-log convexity: examples

With domains $D = \mathbb{R}_{++}^n$:

$$g(\mathbf{x}) = \max\{x_1, \dots, x_n\}$$

$$g(\mathbf{x}) = x_1^{a_1} \cdots x_n^{a_n}$$

$$g(x) = \left(\int_x^\infty e^{-t^2} dt \right)^{-1}$$

With more restricted domains:

$$x \mapsto (-x \log x)^{-1} \quad D = (0, 1)$$

$$\mathbf{X} \mapsto (\mathbf{I} - \mathbf{X})^{-1}$$

$$D = \{\mathbf{X} \in \mathbb{R}_{++}^{n \times n} : \rho(\mathbf{X}) < 1\}$$

$$x \mapsto (\log x)^{-1} \quad D = (1, \infty)$$

Log-log convexity: examples

With domains $D = \mathbb{R}_{++}^n$:

$$g(\mathbf{x}) = \max\{x_1, \dots, x_n\}$$

$$g(\mathbf{x}) = x_1^{a_1} \cdots x_n^{a_n}$$

$$g(x) = \left(\int_x^\infty e^{-t^2} dt \right)^{-1}$$

With more restricted domains:

$$x \mapsto (-x \log x)^{-1} \quad D = (0, 1)$$

$$\mathbf{X} \mapsto (\mathbf{I} - \mathbf{X})^{-1}$$

$$D = \{\mathbf{X} \in \mathbb{R}_{++}^{n \times n} : \rho(\mathbf{X}) < 1\}$$

$$x \mapsto (\log x)^{-1} \quad D = (1, \infty)$$

Some tractable constraints for X -SAGE polynomials:

Log-log convexity: examples

With domains $D = \mathbb{R}_{++}^n$:

$$g(\mathbf{x}) = \max\{x_1, \dots, x_n\}$$

$$g(\mathbf{x}) = x_1^{a_1} \cdots x_n^{a_n}$$

$$g(x) = \left(\int_x^\infty e^{-t^2} dt \right)^{-1}$$

With more restricted domains:

$$x \mapsto (-x \log x)^{-1} \quad D = (0, 1)$$

$$\mathbf{X} \mapsto (\mathbf{I} - \mathbf{X})^{-1}$$

$$D = \{\mathbf{X} \in \mathbb{R}_{++}^{n \times n} : \rho(\mathbf{X}) < 1\}$$

$$x \mapsto (\log x)^{-1} \quad D = (1, \infty)$$

Some tractable constraints for X -SAGE polynomials:

$$\|\mathbf{x}\|_p \leq a \quad x_j^2 = a \quad a \leq \mathbb{P}\{\mathcal{N}(0, \sigma) \geq |x|\}$$

where $a > 0$.

Thank you!

Handling conditional nonnegativity

Typically, one reduces “ X -nonnegativity” to the case $X = \mathbb{R}^n$.

The standard recipe

- 1 Adopt a representation $X = \{x : g(x) \geq \mathbf{0}\}$.
- 2 Find an identity

$$f = \mathcal{L} + \sum_i \lambda_i g_i$$

where \mathcal{L} and λ_i are known to be nonnegative on \mathbb{R}^n .

E.g., the *positivstellensatz* of Putinar, Stengle, or Schmudgen.

Use the sageopt python package.

- Python 3.5 or higher (recommend ≥ 3.6).
- “`pip install sageopt`”
- Signomial and polynomial optimization.
- Require open-source convex solver, ECOS.
- Recommend commercial solver, MOSEK.