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Given a function f and a set X C R", we have

fx =inf{f(x):xin X}
=sup{y: f(x) >~ forall x in X}.
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Given a function f and a set X C R", we have

fx =inf{f(x):xin X}
=sup{y: f(x) >~ forall x in X}.

If we can prove f — v is > 0 over X, then we know f% > 7.
Obstacle: proving nonnegativity is hard (NP-Hard).

Tool: tractable sufficient conditions for nonnegativity.
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Introduction Theory Optimization Discussion

Signomials Caltech

Signomials are functions of the form
m
T — E ciexp(ay - x)
i=1
for real scalars ¢;, and row vectors «; in R"™.

If ¢ > 0, then Sig(ey, ¢) is convex.

If allow arbitrary ¢; < 0, then optimization becomes NP-Hard.
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The relative entropy function is the continuous extension of

m
D(u,v) = Zuz log(ui/v;) to R xR,
i=1
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Definitions from Convex Analysis Caltech

The relative entropy function is the continuous extension of
m
D(u,v) = ZUZ log(ui/v;) to R xR,
i=1
The support function of a convex set X is
ox(A) =sup{ATz : x in X}.
A set convex set K is called a cone if
reK = leK forall A>0;

the dual cone to K is

K'={y : y"®>0forall  in K}.
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Theory of SAGE certificates.
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The signomial X-nonnegativity cones Caltech

Define the X-nonnegativity cone for signomials over exponents a:

Crans(a, X) ={c: > " ciexp(ay-x) >0 for all z in X}.
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Introduction Theory Optimization Discussion

The signomial X-nonnegativity cones Caltech

Define the X-nonnegativity cone for signomials over exponents a:
Crans(a, X) ={c: > " ciexp(ay-x) >0 for all z in X}.
These nonnegativity cones exhibit affine-invariance:
Cnns (o, X) = Onns(a — 1u, X) = Cnns(aV, VX))

for all row vectors uw in R"™, and all invertible V' in R™*"™,
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X-SAGE = X-nonnegativity Caltech

Definition. A signomial which is nonnegative over X and which
has at most one negative coefficient is an “X-AGE function.”
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X-SAGE = X-nonnegativity Caltech

Definition. A signomial which is nonnegative over X and which
has at most one negative coefficient is an “X-AGE function.”

We take sums of X-AGE cones to obtain the X-SAGE cone

Csace(a, X) = Z{c : e\, > 0and cin Oxns(e, X))
k=1

Crucial question: How to represent the AGE cones?
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The convex duality behind AGE cones Caltech

Fix o in R™*", and ¢ in R™ satisfying ¢\, > 0. Convex X C R".
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Introduction Theory Optimization Discussion

The convex duality behind AGE cones Caltech
Fix o in R™*", and ¢ in R™ satisfying ¢\, > 0. Convex X C R".
Appeal to affine invariance of Cxng(a, X), and rearrange terms:

Sy cexplag ) >0 & 3L ciexp((o — o] @) > 0
Zi;ék G exp([ai - ak] LX) > —cg.

Appeal to convex duality. The nonnegativity condition
inf { doizkciexp(log —ag]-x) : xin X} > —cg
holds if and only if there exists v in R™~!, X in R satisfying
ox(A) +D(v,ey) — vl < ¢, and

[a\k - 1ak]u +A=0.
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Support function ox(A) = sup{ATz : x in X} always convex.
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X is tractable = X-SAGE is tractable Caltech

There are two constraints in an AGE cone:

m [y, —laglv+A=0 definitely tractable

mox(A)+D(v,ey) — vl < tractability unclear

Support function ox(A) = sup{ATz : x in X} always convex.

When is it tractable?

X={x:||lz—al|<r} = ox(A)=ATa+r|)\|.
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Introduction Theory Optimization Discussion
X is tractable = X-SAGE is tractable Caltech
There are two constraints in an AGE cone:
m [y, —laglv+A=0 definitely tractable
mox(A)+D(v,e) — vl < tractability unclear
Suppose X = {x : Ax + b € K} is strictly feasible.

Then
ox(A) <t

if and only if some 7 satisfies

nek!, ATm+A=0, and b'p<t
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A univariate example Caltech
f(:l?) — e—3x + e—2x 4 4e® 4+ 62:(: —4e T _1— 6330 over x <0

4,
3,

ST N

-0.5 0.5 1.0
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A univariate example Caltech

f(m) — 6—390 + e—2x 4 4e® 4+ 62:1: —4e T _1— 6390 over x <0

.

-0.5 0.5 1.0

fi(z) =0.88 €737 40.82-¢72* +2.69 e +0.12-€** —4.¢*
fo(z) =0.10 - €3 40.15- 72 +0.90 - €* +0.12 - — 1
f3(z) =0.02- €737 +0.03- 2% +0.41 - ¥ 4+ 0.76 - €** — 3*
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Geometric-form signomials Caltech

If € > 0, then
Ty

is defined for any real «;.

If X C R% ., then

{c: > ™ >0 forall x in X} = Cnns(a, log X).
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Geometric-form signomials Caltech

If € > 0, then
Ty

is defined for any real «;.
If X C R% ., then

{c: > ™ >0 forall x in X} = Cnns(a, log X).

Therefore
Csace(a,log X) C {c : Y cie™ >0 for all x in X},

and the L.H.S. inherits tractability from Y = log X.

arXiv:1907.00814 Riley Murray
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Optimization.
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Simple SAGE relaxations Caltech

Consider f(x) = > ", ciexp(ay - ) with a; = 0. Fix convex X.

The primal and dual SAGE relaxations for f% are

FACE —sup{~y : ¢ —~(1,0,...,0) in Csage(a, X)}
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Simple SAGE relaxations Caltech

Consider f(x) = > ", ciexp(ay - ) with a; = 0. Fix convex X.

The primal and dual SAGE relaxations for f% are

FACE —sup{~y : ¢ —~(1,0,...,0) in Csage(a, X)}
= inf{c™w : v; =1 and v in Csaqr(a, X))

The dual X-SAGE cone can be expressed as

CSAGE(O{,X)T = cl{v : some zq,..., 2, in R" satisfy

. relative entropy constraints ...
and zi /v € X for all kin [m]}.

Solution recovery? Consider vectors xj = zj /vy for k in [m].
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A small example Caltech

inﬂg3 f(x) =0.5exp(z1 — x2) — expxy — Hexp(—x2)
xre

s.t. exp(ze — x3) + exp o + 0.05exp(xy + z3) < 100
log70 < z; <log150
log 1.0 <z < log 30
log 0.5 < z3 < log21
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Introduction Theory Optimization Discussion

A small example Caltech

inﬂg3 f(x) =0.5exp(z1 — x2) — expx1 — Sexp(—x2)
xe

s.t. exp(za — x3) + expxg + 0.05exp(z1 + 3) < 100
log70 < z; <log150
log 1.0 <z < log 30
log 0.5 < z3 < log21

Compute fSAGE = —147.85713 < f%, recover feasible
X X

x* = (5.01063529, 3.40119660, —0.48450710)

satisfying f(x*) = —147.66666. This is actually optimal!
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Nonconvex contraints Caltech

Q: What should we do when some constraints are nonconvex?

A: Combine X-SAGE certificates with Lagrangian relaxations.

Concretely, suppose we want to minimize f over
Q=Xn{x : g(x) <0}
where X is convex, but g1, ..., gr are nonconvex signomials.

Then, if Aq,..., \x are nonnegative dual variables, we have

k
inf f(x) > sup {'y f+ Z)‘igi —yis X—SAGE} .

€0
* i1
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A bigger example Caltech

inf 720, 4 43200¢ + 14400¢° 4 5760¢° + R%p® + 0.4R%p° — 7198.2  (Ex11)
st.15<H<25, 15<H, <25, 12<H, <19
330 < R <380, 330< Ry <380, 005<¢p<02
252.154H 2 +4500R™2 <1, R™'Ry, — 05HR™' =1
0.0125H + 0.00833 R¢ + 0.0000694 R¢® — 0.001389R¢> < 1
30.52132H, 1 —120H Y — 40H '® — 16H1¢® < 1
2238 432 H > 4 53720.208 H * o + 17906.736 H-*©® + 7T162.694 H 4"
+19.995H 1 —8951.207H* —120H "o — 40H "> —16H '¢° < 1
2521543 H, % + 0.005837H, *R%¢* 4+ 4500R 2 — 0.0175H, 2 R%y?
—0.000778H; 2R%x° < 1
67.73085H 1S RY:2p™2 + 146.53487H 08 R, D802
+393.00732H R/ %% <1
HH' + 0.5H, ' R? + 0.02777TH,  R¢> — 0.0416667H, " R¢*
—0.16663H; 'Ry — 0.001389H, ' Ryp® = 1
2HR 'p™2 - 2H.R'p™2 — 0.41667¢% — 0.16944¢" = 1

Benchmark problem from 1970's. SAGE set a new record.

arXiv:1907.00814 Riley Murray
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Use the sageopt python package. Caltech

Python 3.5 or higher (recommend > 3.6).

®m “pip install sageopt”

Signomial and polynomial optimization.

Require open-source convex solver, ECOS.

m Recommend commercial solver, MOSEK.
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Concluding Remarks Caltech

The content of this presentation is a small fraction of

Signomial and Polynomial Optimization via Relative Entropy and
Partial Dualization

— a paper by R.M., Venkat Chandraksekaran, and Adam Wierman.
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