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Introduction Theory Optimization Discussion

Nonnegativity and Optimization

Given a function f and a set X ⊂ Rn, we have

f?X = inf{f(x) : x in X}

= sup{γ : f(x) ≥ γ for all x in X}.

If we can prove f − γ is ≥ 0 over X, then we know f?X ≥ γ.

Obstacle: proving nonnegativity is hard (NP-Hard).

Tool: tractable sufficient conditions for nonnegativity.
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Introduction Theory Optimization Discussion

Signomials

Signomials are functions of the form

x 7→
m∑
i=1

ci exp(αi · x)

for real scalars ci, and row vectors αi in Rn.

If c ≥ 0, then Sig(α, c) is convex.

If allow arbitrary ci < 0, then optimization becomes NP-Hard.
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Introduction Theory Optimization Discussion

Definitions from Convex Analysis

The relative entropy function is the continuous extension of

D(u,v) =

m∑
i=1

ui log(ui/vi) to Rm
+ × Rm

+ .

The support function of a convex set X is

σX(λ) = sup{λᵀx : x in X}.

A set convex set K is called a cone if

x ∈ K ⇒ λx ∈ K for all λ ≥ 0;

the dual cone to K is

K† = {y : yᵀx ≥ 0 for all x in K}.
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Introduction Theory Optimization Discussion

Theory of SAGE certificates.
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Introduction Theory Optimization Discussion

The signomial X-nonnegativity cones

Define the X-nonnegativity cone for signomials over exponents α:

CNNS(α, X)
.
= { c :

∑m
i=1 ci exp(αi · x) ≥ 0 for all x in X}.

These nonnegativity cones exhibit affine-invariance:

CNNS(α, X) = CNNS(α− 1u, X) = CNNS(αV ,V −1X)

for all row vectors u in Rn, and all invertible V in Rn×n.
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Introduction Theory Optimization Discussion

X-SAGE ⇒ X-nonnegativity

Definition. A signomial which is nonnegative over X and which
has at most one negative coefficient is an “X-AGE function.”

We take sums of X-AGE cones to obtain the X-SAGE cone

CSAGE(α, X) =
m∑
k=1

{c : c\k ≥ 0 and c in CNNS(α, X)}︸ ︷︷ ︸
kth X-AGE cone

.

Crucial question: How to represent the AGE cones?
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Introduction Theory Optimization Discussion

The convex duality behind AGE cones

Fix α in Rm×n, and c in Rm satisfying c\k ≥ 0. Convex X ⊂ Rn.

Appeal to affine invariance of CNNS(α, X), and rearrange terms:∑m
i=1 ci exp(αi · x) ≥ 0 ⇔

∑m
i=1 ci exp([αi −αk] · x) ≥ 0∑
i 6=k ci exp([αi −αk] · x) ≥ −ck.

Appeal to convex duality. The nonnegativity condition

inf
{∑

i6=k ci exp([αi −αk] · x) : x in X
}
≥ −ck

holds if and only if there exists ν in Rm−1, λ in Rn satisfying

σX(λ) +D(ν, c\k)− νᵀ1 ≤ ck, and

[α\k − 1αk]ν + λ = 0.
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Introduction Theory Optimization Discussion

X is tractable ⇒ X-SAGE is tractable

There are two constraints in an AGE cone:

[α\k − 1αk]ν + λ = 0 definitely tractable

σX(λ) +D(ν, c\k)− νᵀ1 ≤ ck tractability unclear
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σX(λ) +D(ν, c\k)− νᵀ1 ≤ ck tractability unclear

Support function σX(λ) = sup{λᵀx : x in X} always convex.

When is it tractable?

X = Rn ⇒ σX(λ) =

{
0 if λ = 0

+∞ if λ 6= 0
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Support function σX(λ) = sup{λᵀx : x in X} always convex.

When is it tractable?

X = {x : ‖x− a‖ ≤ r} ⇒ σX(λ) = λᵀa+ r‖λ‖∗
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Introduction Theory Optimization Discussion

X is tractable ⇒ X-SAGE is tractable

There are two constraints in an AGE cone:

[α\k − 1αk]ν + λ = 0 definitely tractable

σX(λ) +D(ν, c\k)− νᵀ1 ≤ ck tractability unclear

Suppose X = {x : Ax+ b ∈ K} is strictly feasible.

Then
σX(λ) ≤ t

if and only if some η satisfies

η ∈ K†, Aᵀη + λ = 0, and bᵀη ≤ t.
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Introduction Theory Optimization Discussion

A univariate example

f(x) = e−3x + e−2x + 4ex + e2x − 4e−x − 1− e3x over x ≤ 0

-0.5 0.5 1.0

-3

-2

-1

1

2

3

4

f1(x) = 0.88 · e−3x + 0.82 · e−2x + 2.69 · ex + 0.12 · e2x − 4 · e−x

f2(x) = 0.10 · e−3x + 0.15 · e−2x + 0.90 · ex + 0.12 · e2x − 1

f3(x) = 0.02 · e−3x + 0.03 · e−2x + 0.41 · ex + 0.76 · e2x − e3x
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Introduction Theory Optimization Discussion

Geometric-form signomials

If x > 0, then
x 7→

∑m
i=1 cix

αi

is defined for any real αi.

If X ⊂ Rn
++, then

{c :
∑m

i=1 cix
αi ≥ 0 for all x in X} = CNNS(α, logX).

Therefore

CSAGE(α, logX) ⊂ {c :
∑m

i=1 cix
αi ≥ 0 for all x in X},

and the L.H.S. inherits tractability from Y = logX.
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Introduction Theory Optimization Discussion

Optimization.
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Introduction Theory Optimization Discussion

Simple SAGE relaxations

Consider f(x) =
∑m

i=1 ci exp(αi · x) with α1 = 0. Fix convex X.

The primal and dual SAGE relaxations for f?X are

fSAGE
X = sup{ γ : c− γ(1, 0, . . . , 0) in CSAGE(α, X)}

= inf{cᵀv : v1 = 1 and v in CSAGE(α, X)†}.

The dual X-SAGE cone can be expressed as

CSAGE(α, X)† = cl{v : some z1, . . . ,zm in Rn satisfy

... relative entropy constraints ...

and zk/vk ∈ X for all k in [m]}.

Solution recovery? Consider vectors xk = zk/vk for k in [m].
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Introduction Theory Optimization Discussion

A small example

inf
x∈R3

f(x)
.
= 0.5 exp(x1 − x2)− expx1 − 5 exp(−x2)

s.t. exp(x2 − x3) + expx2 + 0.05 exp(x1 + x3) ≤ 100

log 70 ≤ x1 ≤ log 150

log 1.0 ≤ x2 ≤ log 30

log 0.5 ≤ x3 ≤ log 21

Compute fSAGE
X = −147.85713 ≤ f?X , recover feasible

x? = (5.01063529, 3.40119660,−0.48450710)

satisfying f(x?) = −147.66666. This is actually optimal!
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Introduction Theory Optimization Discussion

Nonconvex contraints

Q: What should we do when some constraints are nonconvex?

A: Combine X-SAGE certificates with Lagrangian relaxations.

Concretely, suppose we want to minimize f over

Ω
.
= X ∩ {x : g(x) ≤ 0}

where X is convex, but g1, . . . , gk are nonconvex signomials.

Then, if λ1, . . . , λk are nonnegative dual variables, we have

inf
x∈Ω

f(x) ≥ sup

{
γ : f +

k∑
i=1

λigi − γ is X-SAGE

}
.
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Introduction Theory Optimization Discussion

A bigger example

Benchmark problem from 1970’s. SAGE set a new record.
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Introduction Theory Optimization Discussion

Use the sageopt python package.

Python 3.5 or higher (recommend ≥ 3.6).

“pip install sageopt”

Signomial and polynomial optimization.

Require open-source convex solver, ECOS.

Recommend commercial solver, MOSEK.
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Concluding Remarks

The content of this presentation is a small fraction of

Signomial and Polynomial Optimization via Relative Entropy and
Partial Dualization

– a paper by R.M., Venkat Chandraksekaran, and Adam Wierman.

arXiv:1907.00814 Riley Murray 18
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