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Problem : Ambulance Fleet Staffing



Ambulance Fleet Staffing : Setting

● ~ 15 to 25 SFFD operated ambulances
● ~ 3 to 10 privately operated ambulances 

Mandates:

● “Lights and sirens”  → 90th% ambulance response time < 10 minutes.
● No lights and sirens → 90th% ambulance response time < 20 minutes.
● Private ambulances handle < 20% of all calls.

Number of ambulances in service at any given time:



Ambulance Fleet Staffing : Project

● Model uncertainty in call volume.

● Find optimal ambulance fleet schedule given the uncertainty model.

● Develop a computer system to do this automatically, whenever SFFD wants.

this presentation

my senior project

Project components :



# calls in system : Mon., May 11, 2015



# calls in system : Wed., May 13, 2015



# calls in system : Sat., May 16, 2015



… how do you plan for that?

Key : ambulances need to be staffed at high levels of service.

What distributional information is available to ensure high service level?

Treat each minute of the week as having its own (unknown) distribution.



Distribution of #calls in system - 2015

~50 samples for each 
minute of the week (10,080 
minutes / week)

● Blue = mean for each 
minute

● Red = std dev for each 
minute



Distribution of #calls in system - 2015

SOLUTION : smooth the 
curve … somehow.

PROBLEM : curve is 
too jagged. Taking this 
as gospel will have us 
“staffing to fit noise.”



How does one fit periodic functions?

 FOURIER SERIES ! 



Mean # of Calls in System (with 16th order Fourier approximation).



How will we set robust target staffing level?

● Want target to be “90th percentile of demand” + [transit time buffer]

○ Ensure > 90% of all calls have ambulance on scene in required timeframe.

● How estimate 90th percentile of demand?

○ Lots of data →  empirical distribution

○ Less data →  queueing theoretic model(s) 



Est. 90th%ile of demand - empirical dist.

 “big_matrix” containing “# active calls” data

One column == one minute (10,080 columns)

One row == one week
(~ 12 or ~50 rows)

Definition : 90% of data in column i of “big_matrix” is <= “P90_raw(i)”

Run fourier approximation on “P90_raw” to get “P90_nominal”.

P90_nominal(i) is nominal 90th%ile of demand at minute “i” of a non-holiday week.



# Calls in System

blue →  mean
red →  P90_raw
blk →  P90_nominal



Est. 90th%ile of demand - empirical dist.

Looks good, but has a drawback.

● Estimating 90th%ile takes a lot of data.

● Each week gets us a single datapoint.

● We would like to capture seasonality in 

data (if it exists).



Est. 90th%ile of demand 

* WANT *

to estimate P90 
with significantly 
fewer data points 
(~15 to 20)

* HAVE *

Queueing Theory!



Est. 90th%ile of demand - queueing theory

My procedure at a high level : 

● Estimate (via data + smoothing) a mean # in system function m(t) 

● Set target using square root staffing level *, plus transit factor.

Other things one can do :

● Estimate (via data + smoothing) an arrival rate function ᶝ(t) & service rate function.

● Use above to compute mean function m(t) by solving a diff.eq.

● Set target staffing level appropriately (potentially estimate variance function v(t) ).

theory



Queueing theory : Square Root Staffing

● Approximate M/G/k as M/G/∞ 

● Steady state # in system for M/G/∞ ~ Poisson(m)         with     m  ≜ ᵣ / Ṍ  >> 1

● Approximate Poisson(m)  with N (m, m)  (with heavy load; use continuity correction)

●  → Approximate steady state # in system for M/G/k as N (m,m)

● Staff at m + c · m ^ (1/2) 

○ Pick c to solve : c ᷈(c)/Ṟ(c) = (1- ᵜ) / ᵜ



Queueing theory : Non-Stationary Staffing

● M /G /∞ approximation used stationary distribution arguments.

● Use normal approx for [M /G /∞](t) too! (even though it doesn’t have stationary distribution…)

○ i.e. approx [M /G /∞](t)  with N (m(t), m(t)) (we’ll only use this)

○ More generally, approx [G /G /∞](t)  with N (m(t), v(t))    (for suitable v (t))

● Set “c” in the square-root staffing rule a little differently.



Queueing theory : Non-Stationary Staffing

(We don’t actually take the ceiling.)

 Since 911 calls follow NHPP

Pick ᵙ so that PD(ᵙ) = 0.1

This is same as before : c ᷈(c)/Ṟ(c) = (1- ᵜ) / ᵜ 

Set m(t) as the smoothed fourier approximation of historical mean # in system.



Queueing theory : Non-Stationary Staffing

… but does it work?



Staffing for 90%ile of demand w/ empirical dist. (red), queueing model (blue) 

( YES ! )



Staffing for 90%ile of demand w/ empirical dist. (red), queueing model (blue) 

Zoomed in on
Monday 

0 < queueing - empirical < 1

It really 
works.



Queueing theory : Why does it work so well?

An observation: the queueing 

theoretic model matches the 

empirical distribution best 

when demand is rising and 

falling (not at peak or anti-peak 

hours).

Let’s investigate that.



Queueing theory : Why does it work so well?

… other than peak hours, it 
looks like the mean tracks the 
variance!

Remind you of anything?

Steady state # in system for 

M/G/∞ ~ Poisson(m) 
Poisson → mean  == variance

Blue = mean, Red = variance



Queueing theory : Why does it work so well?

You can run hypothesis tests 

and find # in system is...

● Normally distributed 

during peak hours.

● Poisson distributed for 

off-peak hours.

Blue = mean, Red = variance



Queueing theory : Why does it work so well?

Peak hours →  N

Off-peak hours → Poisson

Blue = mean, Red = variance

Interpretation : off-peak hours 

see sufficient ambulances for 

system to appear as M/G/∞ .



Queueing theory : Is everyone so lucky?

I’m in a nice situation

● My arrivals are actually Poisson (what if they weren’t?).

● We plan for 90%ile + [transit factor]. 

○ As a side effect, transit factor enhances validity of M/G/∞ approximation

○ What if we didn’t have the transit factor? What if QoS was lower?

● I’m not making huge changes to the [queueing] system (what if I was?).



Non-Stationary Staffing for a [G/G/k](t)

What if my arrivals weren’t Poisson?  

There’s something for that too!



Modifying an [M/G/k](t)

What if I was considering modifications to the [M/G/k](t) system?

I couldn’t use historical data on number in system to estimate m(t).

But I’d still have a shot!

Gc
u(t)  ≜ P{Service of an arrival at time “u” lasts longer than “t” time units }

… but this requires solving a differential equation.



Modifying an [M/M/k](t) : Overview

If services are exponential at rate Ṍ, then we can recover m(t) easily (with an ODE).

This could be useful when considering system modifications that could affect Ṍ.

Although, now we have to estimate ᶝ(t)



Modifying an [M/M/k](t) : Estimating ᶝ(t)  

MUCH more 
variation in 
measurements for ᶝ
(t) than for m(t).

Fourier approx. is 
decent, but there is 
a bigger concern of 
underestimating ᶝ(t).



Modifying an [M/M/k](t) : Solving the ODE 

Google how to use 
MATLAB’s “ODE45” 
function.

Specify
Initial cond., m(0). 
Service rate, Ṍ.
Function, ᶝ(t).

Hit “enter.”



Recovering m(t)  by solving a differential eqn.
Do I recommend this?

● Not if you have access to historical estimates of m(t) 

Why?

● Lots of variation in historical estimates of ᶝ(t).

● Differential equation requires specifying initial condition, and mean service time.

● DiffEq solution is nearly, but not perfectly periodic with period of 1 week, even if ᶝ(t) is.

○ ^ This actually comments on the validity of the 1-week period assumption made at 

the beginning of this presentation. 



Summary

● Queueing theory can make strong predictions about systems without stationary 

distributions.

● Real-world emergency services systems (e.g. ambulances for SFFD) can be modeled as 

simple [M /G /∞](t) queues (maybe “transit factor” is important?).

● Parameters of non-stationary stochastic systems can be modeled with deterministic 

differential equations, and we can solve these differential equations numerically.

○ This differential equations approach could be useful for systems-design work currently 

handled by simulation.
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Thank you!



Questions?


