Queuilng theory to the rescue!

Ambulance fleet staffing to meet time-varying demand.

IEOR 267 Final Project Presentation
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Problem : Ambulance Fleet Staffing
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Ambulance Fleet Staffing : Setting

Number of ambulances in service at any given time:

e ~ 15to 25 SFFD operated ambulances
e ~ 3to 10 privately operated ambulances

Mandates:

e “Lights and sirens” — 90th% ambulance response time < 10 minutes.
e No lights and sirens — 90th% ambulance response time < 20 minutes.
e Private ambulances handle < 20% of all calls.



Ambulance Fleet Staffing : Project

Project components : this presentation

e Model uncertainty in call volume. 4—'

e Find optimal ambulance fleet schedule given the uncertainty model.

e Develop a computer system to do this automatically, whenever SFFD wants.
\ J
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my senior project




Number of active incidents on 11-May-2015
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# calls 1n system : Mon., May 11, 2015



Number of active incidents on 13-May-2015
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# calls 1n system : Wed., May 13, 2015




Number of active incidents on 16-May-2015
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# calls in system : Sat., May 16, 2015




.. how do you plan for that?

Key : ambulances need to be staffed at high levels of service.
What distributional information is available to ensure high service level?

Treat each minute of the week as having its own (unknown) distribution.




Distribution of #calls in system - 2015

~50 samples for each
minute of the week (10,080
minutes / week)

e Blue = mean for each
minute

e Red = std dev for each
minute




Distribution of #calls in system - 2015

PROBLEM : curve is
too jagged. Taking this
as gospel will have us
“staffing to fit noise.”

SOLUTION : smooth the
curve ... somehow.




How does one fit periodic functions?

FOURIER SERIES'!



Mean # of Calls in System (with 16th order Fourier approximation).




How will we set robust target staffing level?

e Want target to be “90th percentile of demand” + [transit time buffer]

o Ensure >90% of all calls have ambulance on scene in required timeframe.

e How estimate 90th percentile of demand?

o Lots of data — empirical distribution

o Less data — queueing theoretic model(s) *




Est. 90th%ile of demand - empirical dist.

One row == one week . _ o ,
(~ 12 or ~50 rows) “big_matrix” containing “# active calls” data

|
One column == one minute (10,080 columns)

Definition : 90% of data in column i of “big_matrix” is <= “P90_raw(i)”
Run fourier approximation on “P90_raw” to get “P90_nominal”.

P90_nominal(i) is nominal 90th%ile of demand at minute “i” of a non-holiday week.



blue — mean
red — P90_raw
blk — P90_nominal

# Calls in System



Est. 90th%ile of demand - empirical dist.

Looks good, but has a drawback.
e Estimating 90th%ile takes a lot of data.
e Each week gets us a single datapoint.
e We would like to capture seasonality in

data (if it exists).




Est. 90th%ile of demand

* WANT * *HAVE *
to estimate P90 Queueing Theory!
with significantly

fewer data points
(~15 to 20)



Est. 90th%ile of demand - queueing theory

My procedure at a high level :

e Estimate (via data + smoothing) a mean # in system function m(t)

e Set target using square root staffing level *, plus transit factor. “X\_eox

Other things one can do :

e Estimate (via data + smoothing) an arrival rate function )L(t) & service rate function.
e Use above to compute mean function m(t) by solving a diff.eq.

e Set target staffing level appropriately (potentially estimate variance function v(t) ).



Queueing theory : Square Root Staffing

e Approximate M/G/k as M/G/°

e Steady state # in system for M/G/~ ~ Poisson(m) with  m 2Ah/u >>1
e Approximate Poisson(m) with N'(m, m) (with heavy load; use continuity correction)

e — Approximate steady state # in system for M/G/k as N (m, m)

o Staffatm+c-m” (1/2)
o Pick cto solve : c @(c)/¢p(c) = (1-d)/ d



Queueing theory : Non-Stationary Staffing

e M/G/*® approximation used stationary distribution arguments.
e Use normal approx for [M/G /*°](t) too! (even though it doesn’t have stationary distribution...)
o i.e.approx [M/G/*](t) with W(m(t), m(t)) (we'll only use this)

o More generally, approx [G/G/®](t) with N (m(t), «(t)) (for suitable v (¢))

[P

e Set “c’ in the square-root staffing rule a little differently.



Queueing theory : Non-Stationary Staffing

Set m(t) as the smoothed fourier approximation of historical mean # in system.

s(t) = [m(t) + 0.5 + zv(t) ], (We don’t actually take the ceiling.)

Since 911 calls follow NHPP

pola) = [1 + 27z, (1 — a) exp(z2/2)]™" Pick a so that PD(U') =0.1

L> This is same as before : c @(c)/¢p(c) = (1-0)/d




Queueing theory : Non-Stationary Staffing

... but does it work?



Staffing for 90%ile of demand w/ empirical dist. (red), queueing model (blue)




Zoomed in on
Monday
It really

works.

0 < queueing - empirical < 1

Staffing for 90%ile of demand w/ empirical dist. (red), queueing model (blue)




Queuelng theory : Why does 1t work so well?

An observation: the queueing
theoretic model matches the
empirical distribution best
when demand is rising and
falling (not at peak or anti-peak

hours).

Let’s investigate that.




Queuelng theory : Why does 1t work so well?

Blue = mean, Red = variance

... other than peak hours, it
looks like the mean tracks the
variance!

Remind you of anything?

Steady state # in system for
M/G/> ~ Poisson(m)

Poisson — mean == variance




Queuelng theory : Why does 1t work so well?

Blue = mean, Red = variance

You can run hypothesis tests
and find # in system is...
e Normally distributed
during peak hours.
e Poisson distributed for

off-peak hours.




Queuelng theory : Why does 1t work so well?

Blue = mean, Red = variance

Peak hours —» N

Off-peak hours — Poisson

Interpretation : off-peak hours

see sufficient ambulances for

system to appear as M/G/> .




Queueing theory : Is everyone so lucky?

I’'m in a nice situation
e My arrivals are actually Poisson (what if they weren’t?).

e We plan for 90%ile + [transit factor].

o As a side effect, transit factor enhances validity of M/G/*°® approximation

o What if we didn’t have the transit factor? What if QoS was lower?

e I’'m not making huge changes to the [queueing] system (what if | was?).



Non-Stationary Staffing for a [G/G/K](t)

What if my arrivals weren’t Poisson?

Paralleling the treatment of the stationary model in
Whitt (1992, §2), we suggest the approximation

v(t) =~ z(t)m(t), where (17)

_ {c-;-tt)—uf* T
2) =1+ —prea | 11— G@Pdx,  (18)

Var[A(t) — A(t — n)] (19)

13 ) =~
G ,‘_,} AMu)du

There’s something for that too!



Modifying an [M/G/K](t)

What if | was considering modifications to the [M/G/k](t) system?

| couldn’t use historical data on number in system to estimate m(t).

But I'd still have a shot!

f 4
m(t) = J. GL(t — u)\(w)du, Gi(x) = e_-[ podu o > Q,

G°,(t) = P{Service of an arrival at time “u” lasts longer than “t” time units }

... but this requires solving a differential equation.



Modifying an [M/M/K](t) : Overview

If services are exponential at rate u, then we can recover m( t) easily (with an ODE).

m'(t) = N(t) — m(t)p,

This could be useful when considering system modifications that could affect u.

Although, now we have to estimate A(t)



Modifying an [M/M/K](t) : Estimating A(t)

MUCH more
variation in
measurements for A

(t) than for m(¢).

Fourier approx. is
decent, but there is
a bigger concern of
underestimating A(t).




Modifying an [M/M/K](t) : Solving the ODE

Google how to use
MATLAB’s “ODE45”
function.

Specify

Initial cond., m(0).
Service rate, u.
Function, A(t).

Hit “enter.”




Recovering =(z) by solving a differential eqn.

Do | recommend this?

e Not if you have access to historical estimates of m(t)
Why?

e Lots of variation in historical estimates of A(t).

e Differential equation requires specifying initial condition, and mean service time.

e DIffEq solution is nearly, but not perfectly periodic with period of 1 week, even if A(t) is.

o " This actually comments on the validity of the 1-week period assumption made at

the beginning of this presentation.



Summary

e Queueing theory can make strong predictions about systems without stationary

distributions.

e Real-world emergency services systems (e.g. ambulances for SFFD) can be modeled as
simple [M /G /*°](t) queues (maybe “transit factor” is important?).

e Parameters of non-stationary stochastic systems can be modeled with deterministic
differential equations, and we can solve these differential equations numerically.

o This differential equations approach could be useful for systems-design work currently

handled by simulation.
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Thank you!



Questions?



