

Queuing theory to the rescue!

Ambulance fleet staffing to meet time-varying demand.

IEOR 267 Final Project Presentation

Riley Murray

Problem : Ambulance Fleet Staffing

Ambulance Fleet Staffing : Setting

Number of ambulances in service at any given time:

- ~ 15 to 25 SFFD operated ambulances
- ~ 3 to 10 privately operated ambulances

Mandates:

- “Lights and sirens” → 90th% ambulance response time < 10 minutes.
- No lights and sirens → 90th% ambulance response time < 20 minutes.
- Private ambulances handle < 20% of all calls.

Ambulance Fleet Staffing : Project

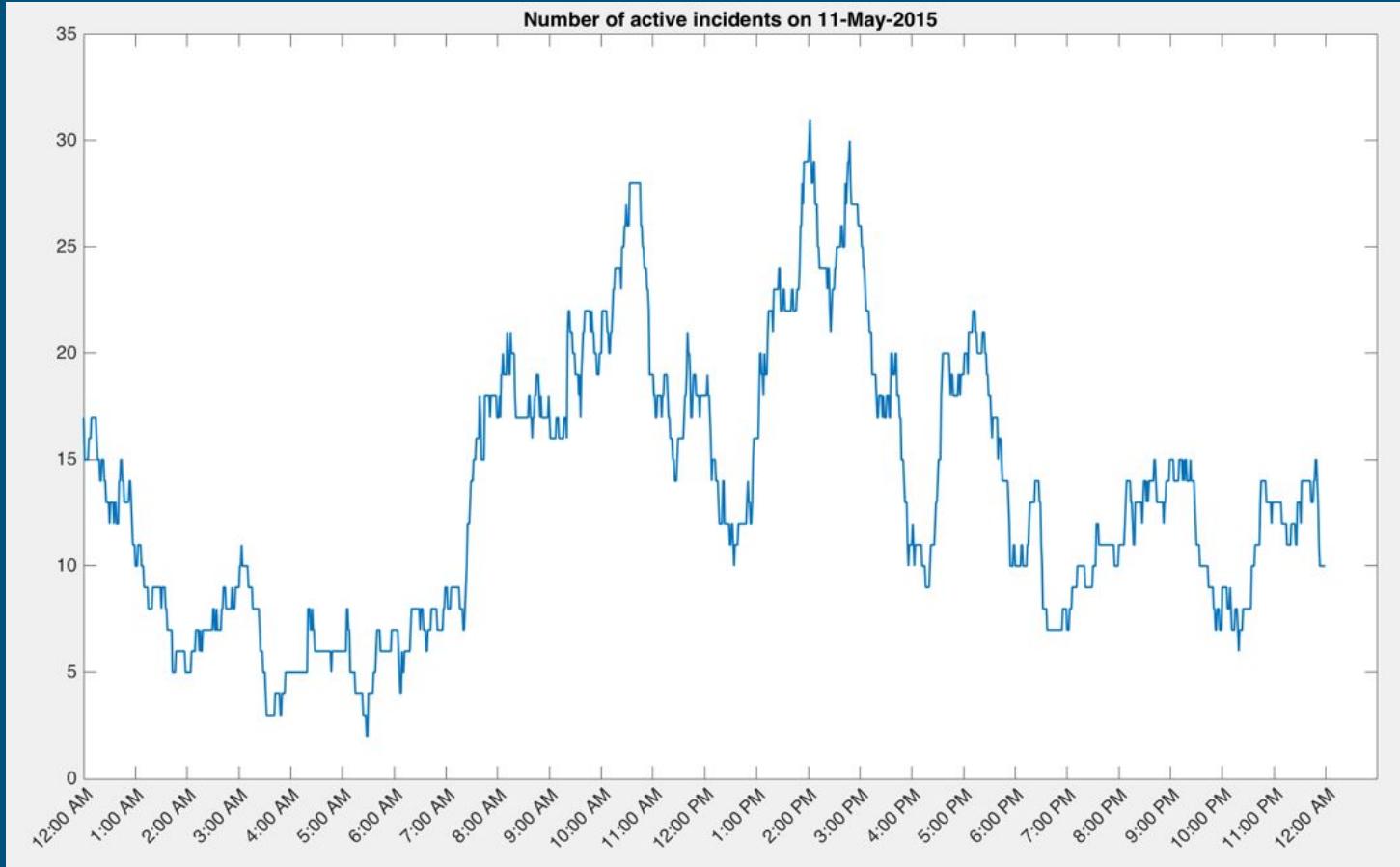
Project components :

this presentation

- Model uncertainty in call volume.
- Find optimal ambulance fleet schedule given the uncertainty model.
- Develop a computer system to do this automatically, whenever SFFD wants.

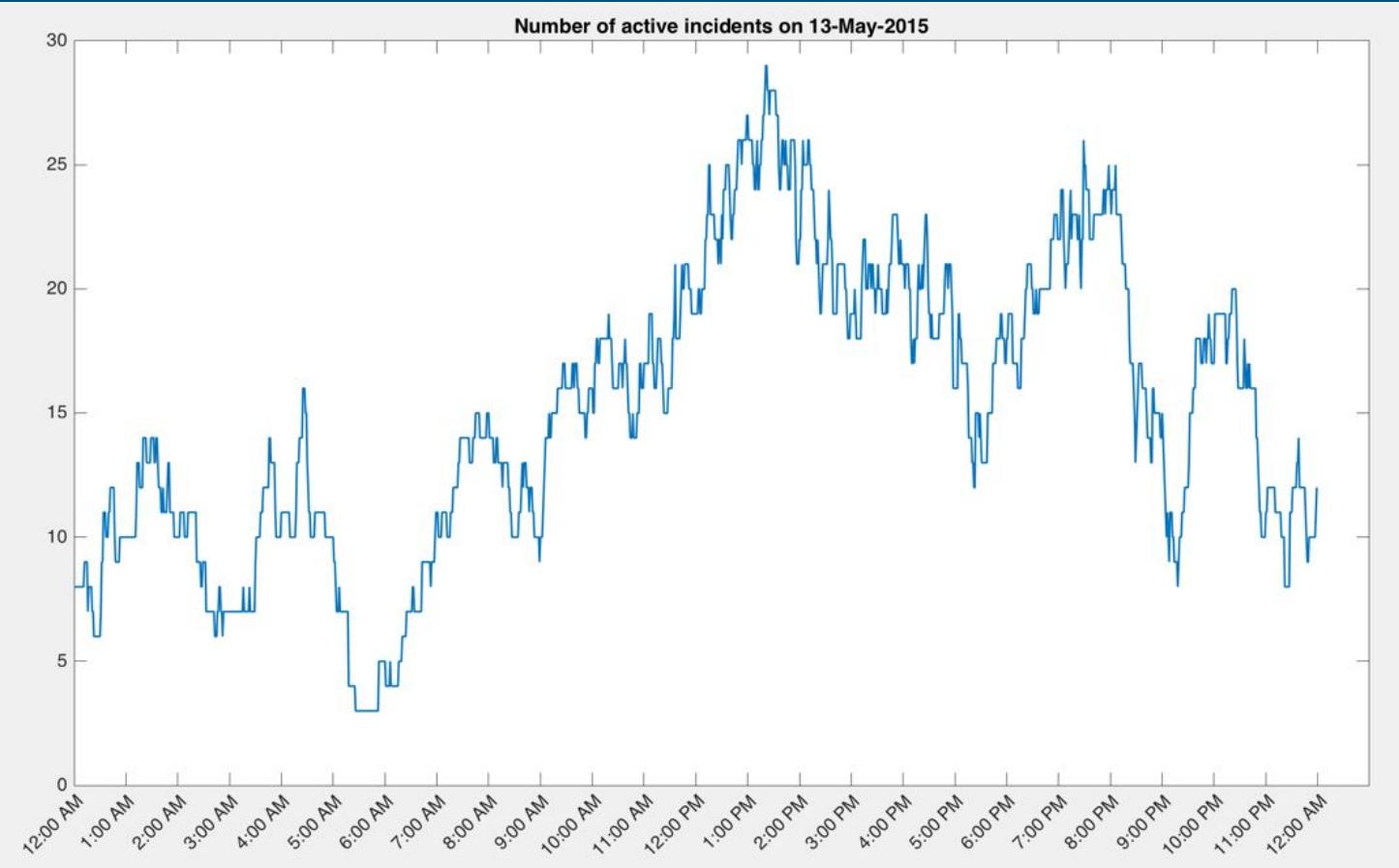
my senior project

Number of active incidents on 11-May-2015



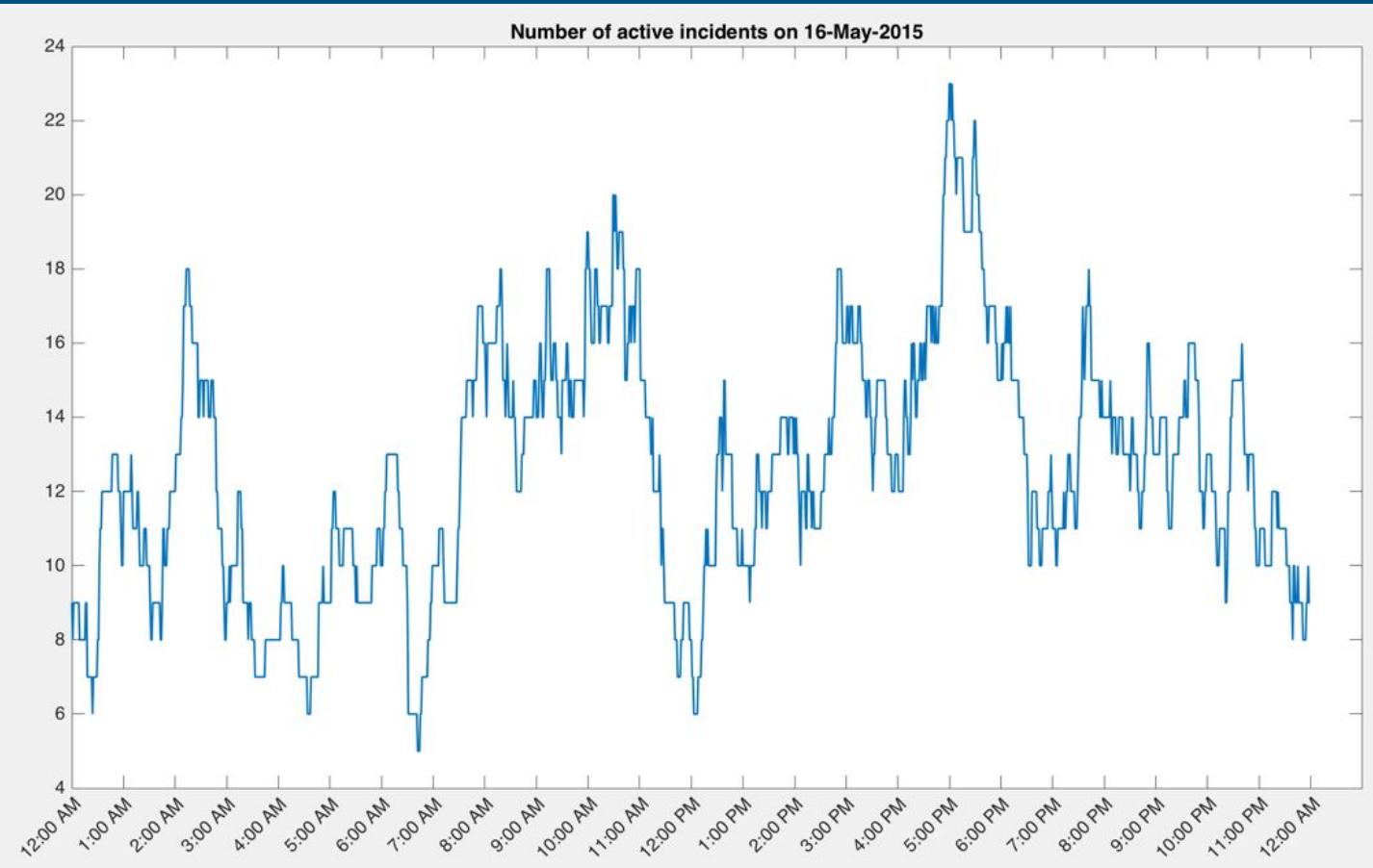
calls in system : Mon., May 11, 2015

Number of active incidents on 13-May-2015



calls in system : Wed., May 13, 2015

Number of active incidents on 16-May-2015



calls in system : Sat., May 16, 2015

... how do you plan for that?

Key : ambulances need to be staffed at *high* levels of service.

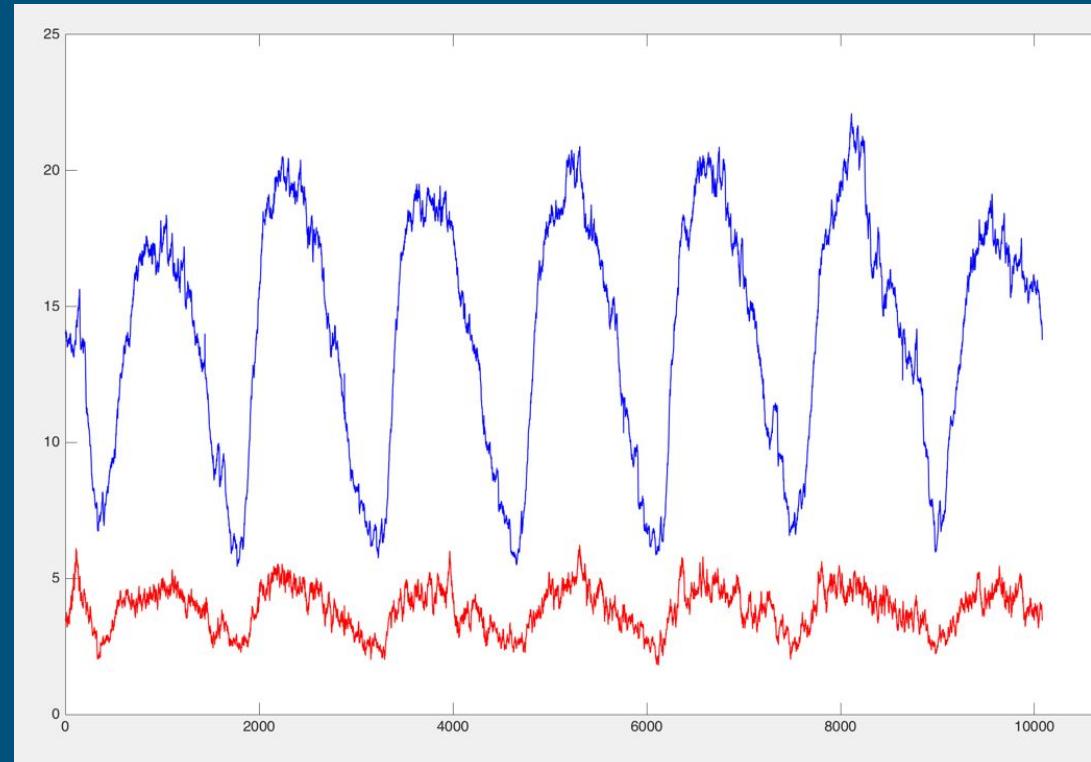
What distributional information is available to ensure high service level?

Treat each *minute of the week* as having its own (unknown) distribution.

Distribution of #calls in system - 2015

~50 samples for each minute of the week (10,080 minutes / week)

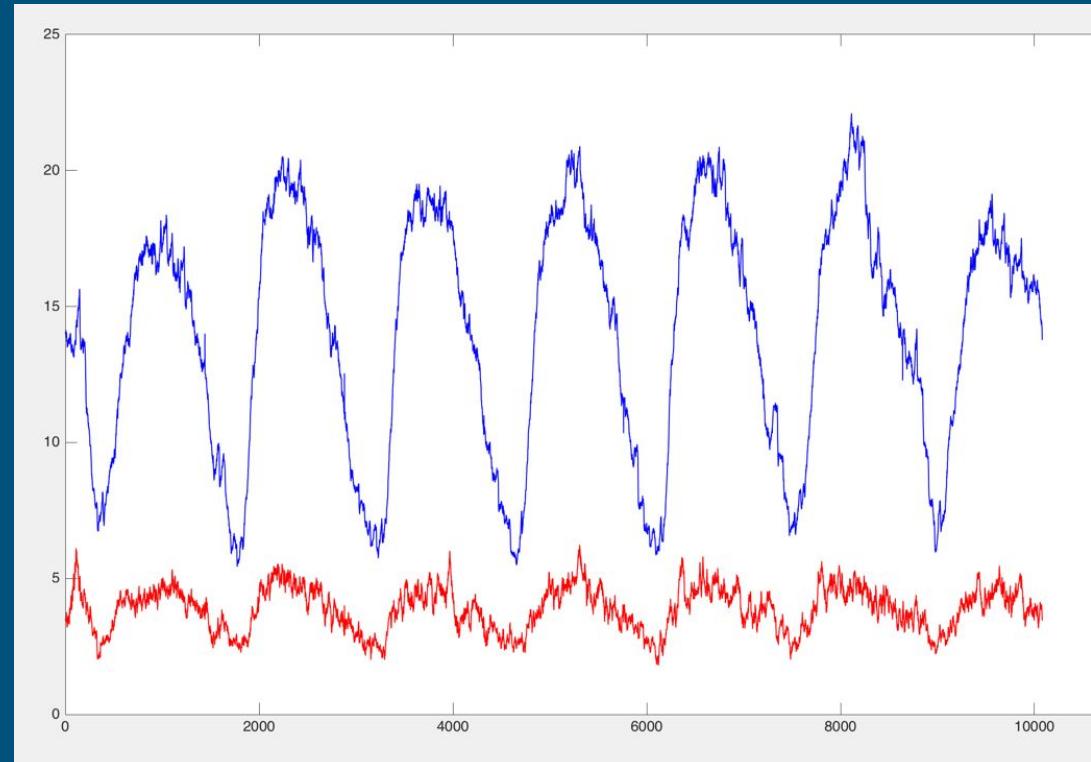
- Blue = mean for each minute
- Red = std dev for each minute



Distribution of #calls in system - 2015

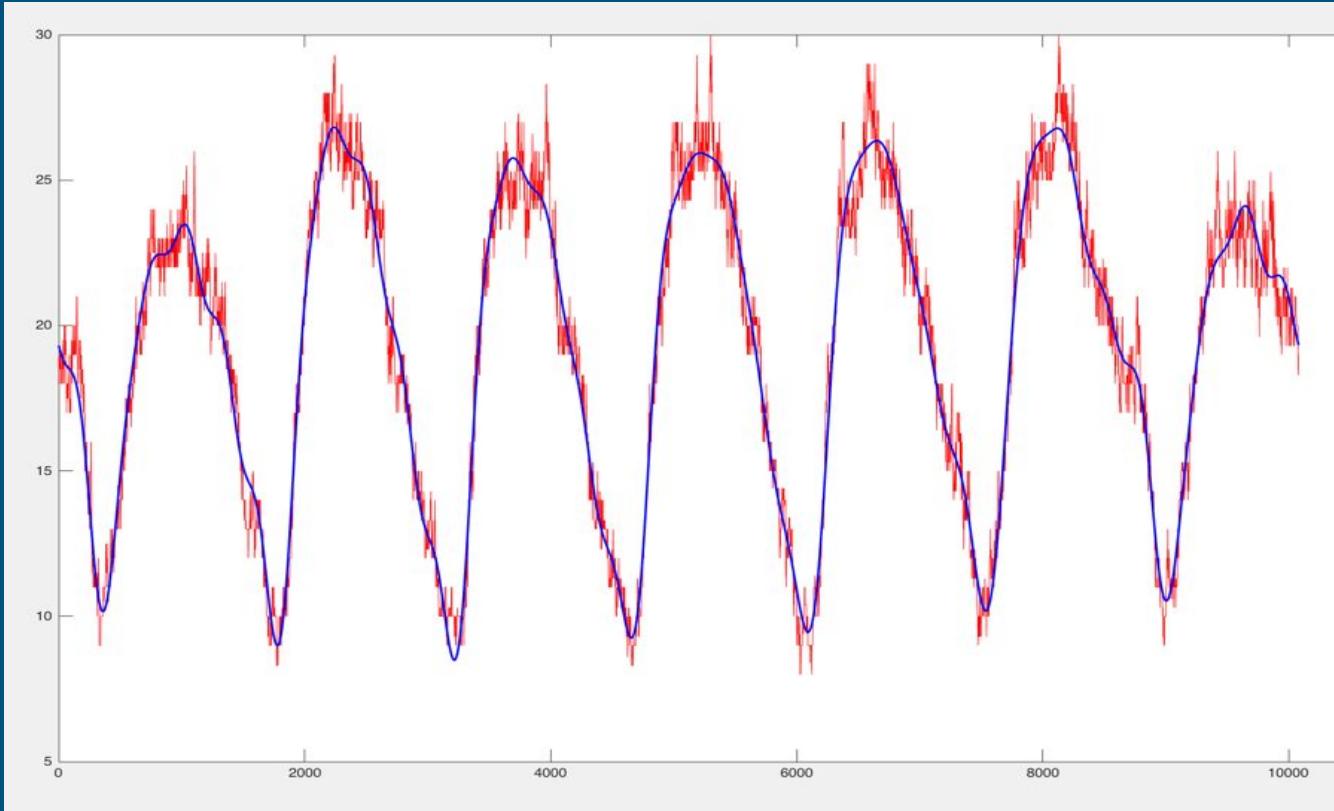
PROBLEM : curve is
too jagged. Taking this
as gospel will have us
“staffing to fit noise.”

SOLUTION : smooth the
curve ... somehow.



How does one fit periodic functions?

FOURIER SERIES !



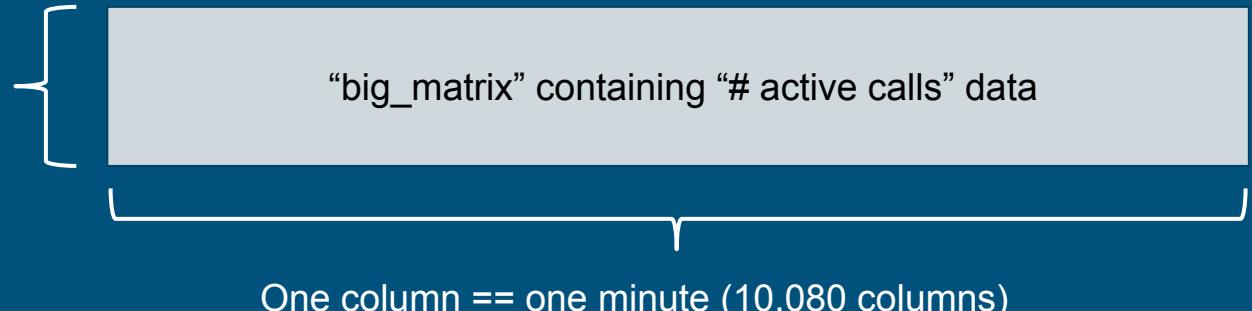
Mean # of Calls in System (with 16th order Fourier approximation).

How will we set robust target staffing level?

- Want target to be “90th percentile of demand” + [transit time buffer]
 - Ensure > 90% of all calls have ambulance on scene in required timeframe.
- How estimate 90th percentile of demand?
 - Lots of data → empirical distribution
 - Less data → queueing theoretic model(s)

Est. 90th%ile of demand - empirical dist.

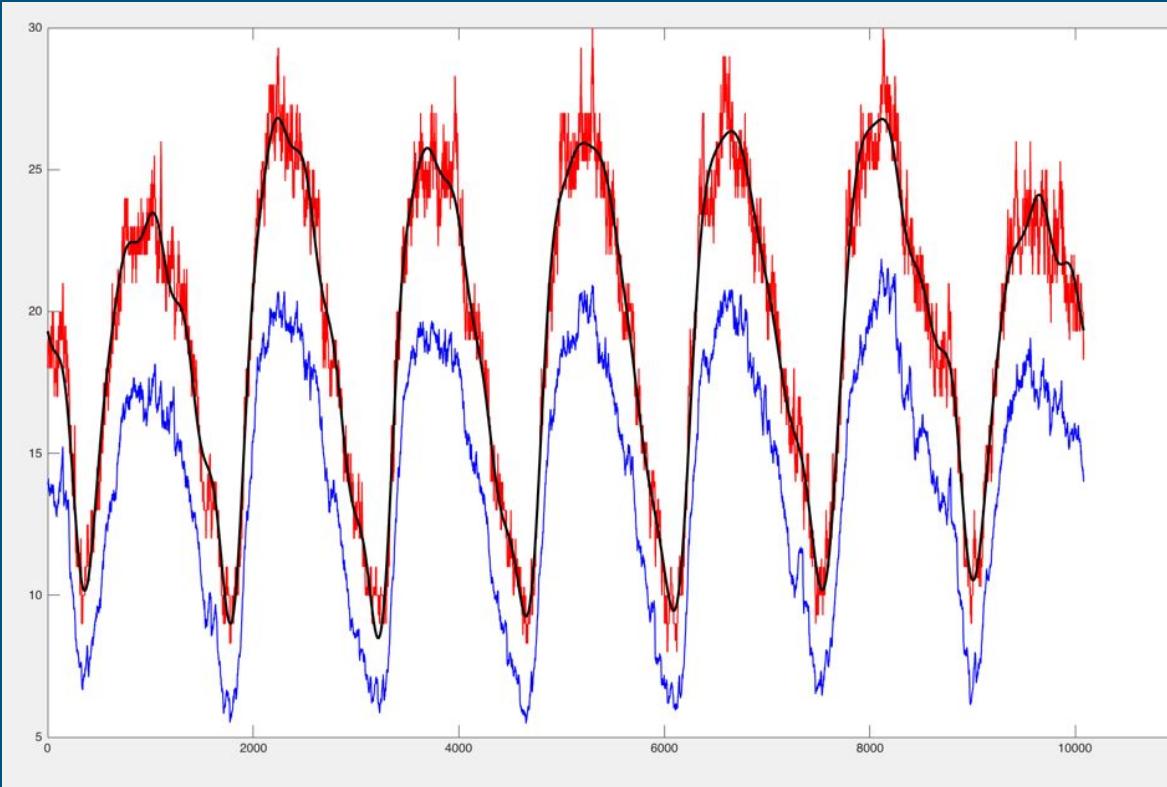
One row == one week
(~ 12 or ~50 rows)



Definition : 90% of data in column i of “big_matrix” is $\leq \text{“P90_raw}(i)\text{”}$

Run fourier approximation on “P90_raw” to get “P90_nominal”.

P90_nominal(i) is nominal 90th%ile of demand at minute “ i ” of a non-holiday week.



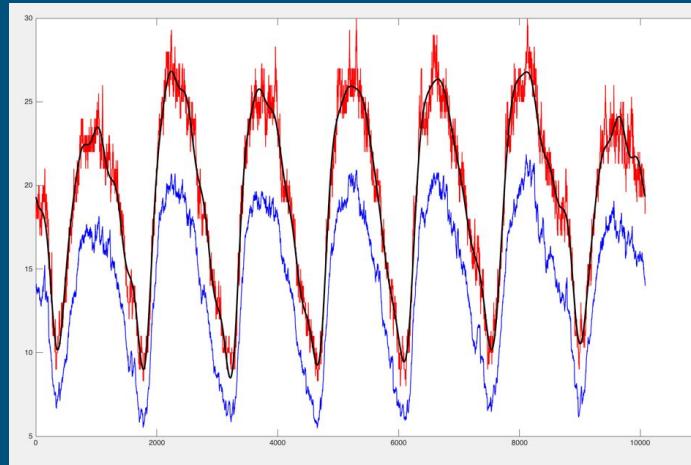
Calls in System

blue → mean
red → P90_raw
blk → P90_nominal

Est. 90th%ile of demand - empirical dist.

Looks good, but has a drawback.

- Estimating 90th%ile takes a lot of data.
- Each *week* gets us a single datapoint.
- We would like to capture seasonality in data (if it exists).



Est. 90th%ile of demand

* WANT *

*to estimate P90
with significantly
fewer data points
(~15 to 20)*

* HAVE *

Queueing Theory!

Est. 90th%ile of demand - queueing theory

My procedure at a high level :

- Estimate (via data + smoothing) a mean # in system function $m(t)$
- Set target using square root staffing level *, plus transit factor.

 theory

Other things one can do :

- Estimate (via data + smoothing) an arrival *rate function* $\lambda(t)$ & service rate function.
- Use above to compute mean function $m(t)$ by solving a diff.eq.
- Set target staffing level appropriately (potentially estimate variance function $v(t)$).

Queueing theory : Square Root Staffing

- Approximate $M/G/k$ as $M/G/\infty$
- Steady state # in system for $M/G/\infty \sim \text{Poisson}(m)$ with $m \triangleq \lambda / \mu \gg 1$
- Approximate $\text{Poisson}(m)$ with $\mathcal{N}(m, m)$ (with heavy load; use continuity correction)
- → Approximate steady state # in system for $M/G/k$ as $\mathcal{N}(m, m)$
- Staff at $m + c \cdot m^{1/2}$
 - Pick c to solve : $c \Phi(c)/\phi(c) = (1 - \delta) / \delta$

Queueing theory : Non-Stationary Staffing

- $M/G/\infty$ approximation used stationary distribution arguments.
- Use normal approx for $[M/G/\infty](t)$ too! (even though it doesn't have stationary distribution...)
 - i.e. approx $[M/G/\infty](t)$ with $\mathcal{N}(m(t), \sigma^2(t))$ (we'll only use this)
 - More generally, approx $[G/G/\infty](t)$ with $\mathcal{N}(m(t), \sigma^2(t))$ (for suitable $\sigma^2(t)$)
- Set “c” in the square-root staffing rule a little differently.

Queueing theory : Non-Stationary Staffing

Set $m(t)$ as the smoothed fourier approximation of historical mean # in system.

$$s(t) = \lceil m(t) + 0.5 + z_\alpha \sqrt{\nu(t)} \rceil,$$

(We don't actually take the ceiling.)

$$\nu(t) = m(t).$$

Since 911 calls follow NHPP

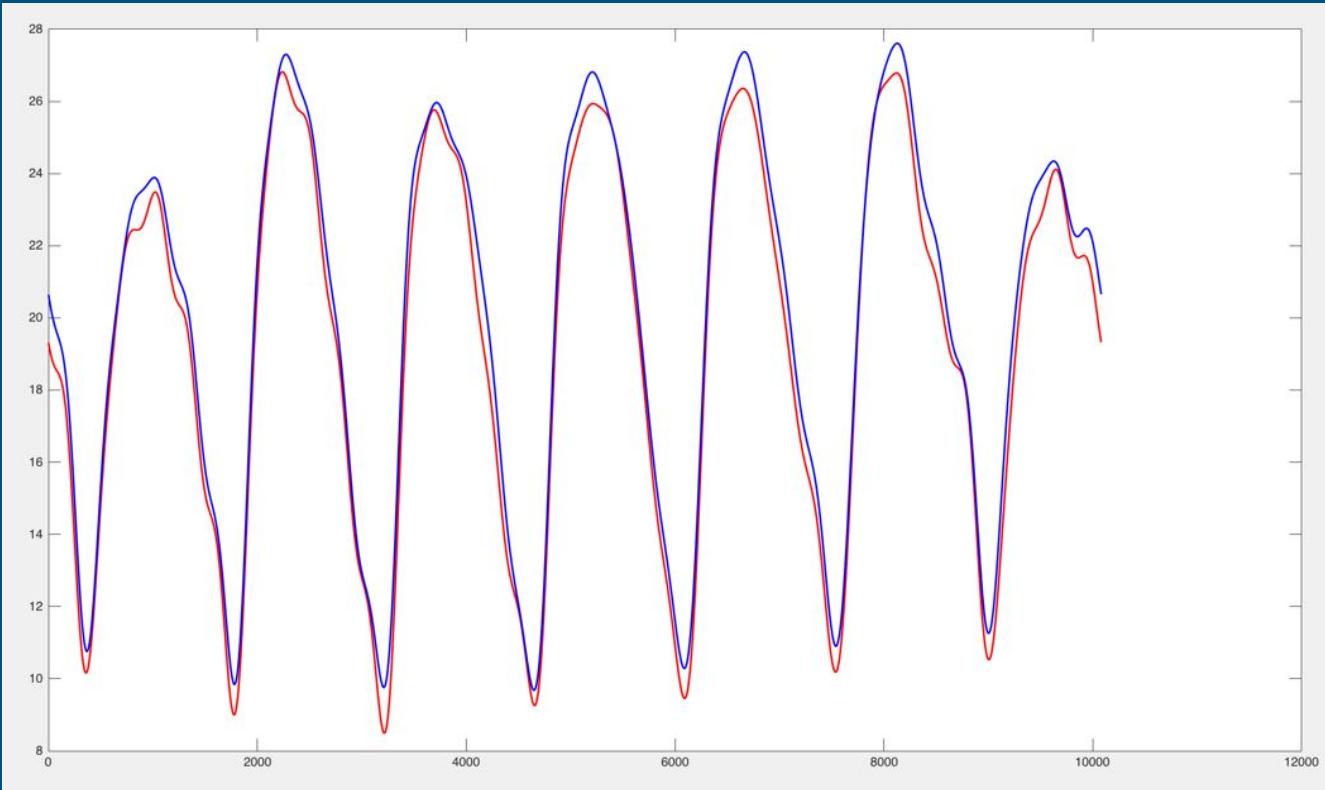
$$p_D(\alpha) \equiv [1 + \sqrt{2\pi} z_\alpha (1 - \alpha) \exp(z_\alpha^2/2)]^{-1}$$

Pick α so that $P_D(\alpha) = 0.1$

This is same as before : $c \Phi(c)/\phi(c) = (1 - \delta) / \delta$

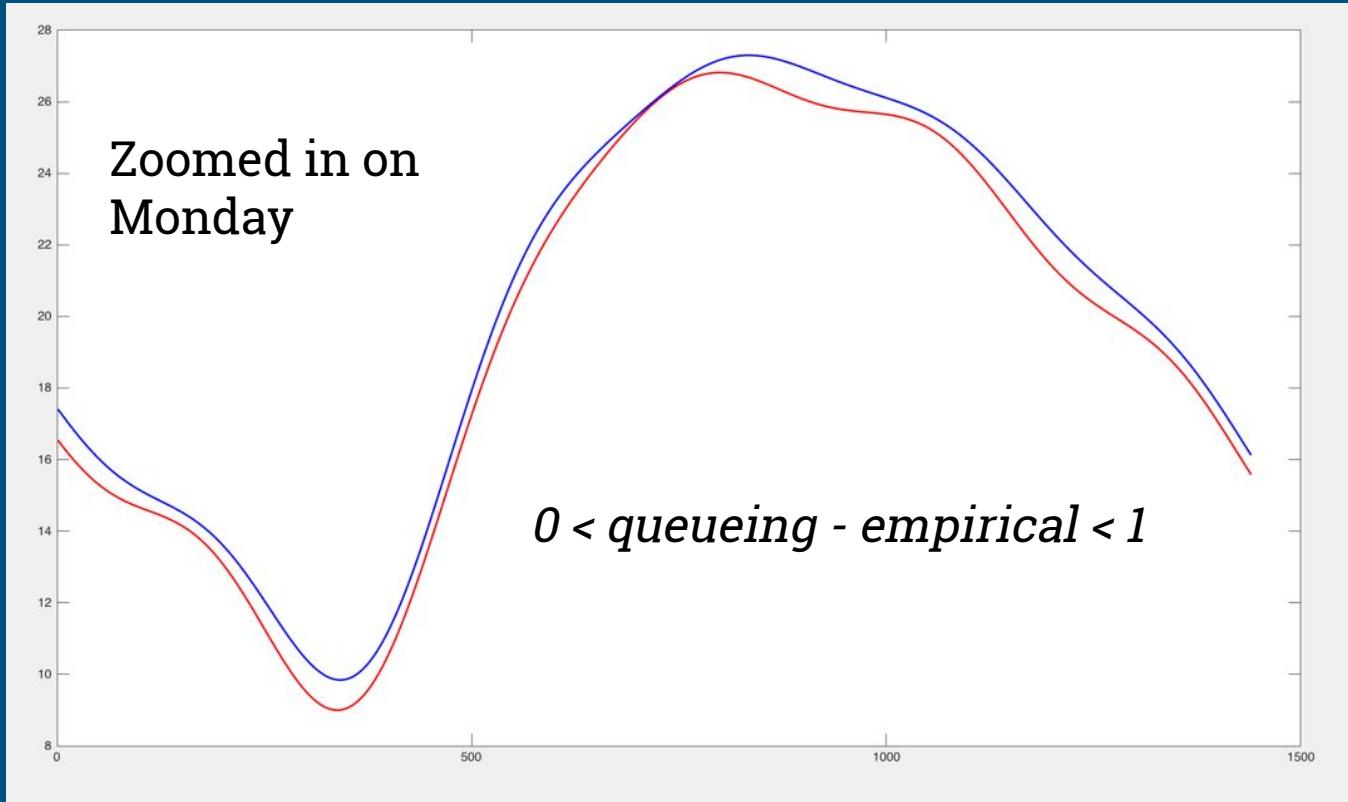
Queueing theory : Non-Stationary Staffing

... but does it work?



(YES !)

Staffing for 90%ile of demand w/ empirical dist. (red), queueing model (blue)



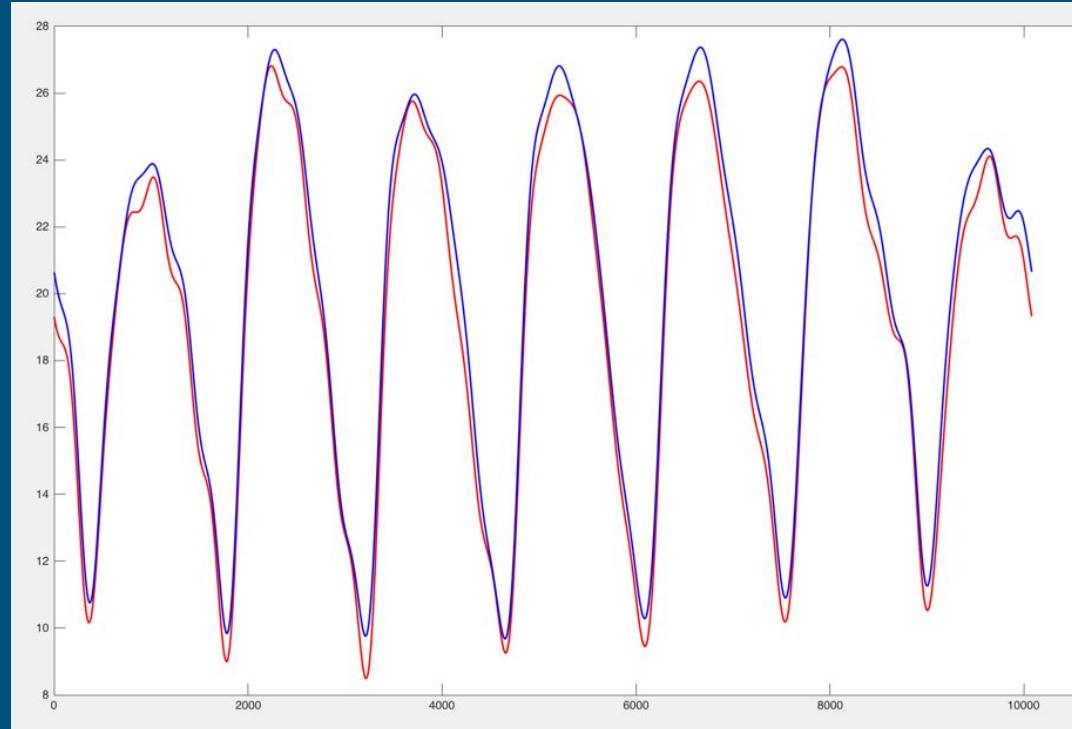
*It really
works.*

Staffing for 90%ile of demand w/ empirical dist. (red), queueing model (blue)

Queueing theory : Why does it work so well?

An observation: the queueing theoretic model matches the empirical distribution best when demand is rising and falling (not at peak or anti-peak hours).

Let's investigate that.



Queueing theory : Why does it work so well?

Blue = mean, Red = variance

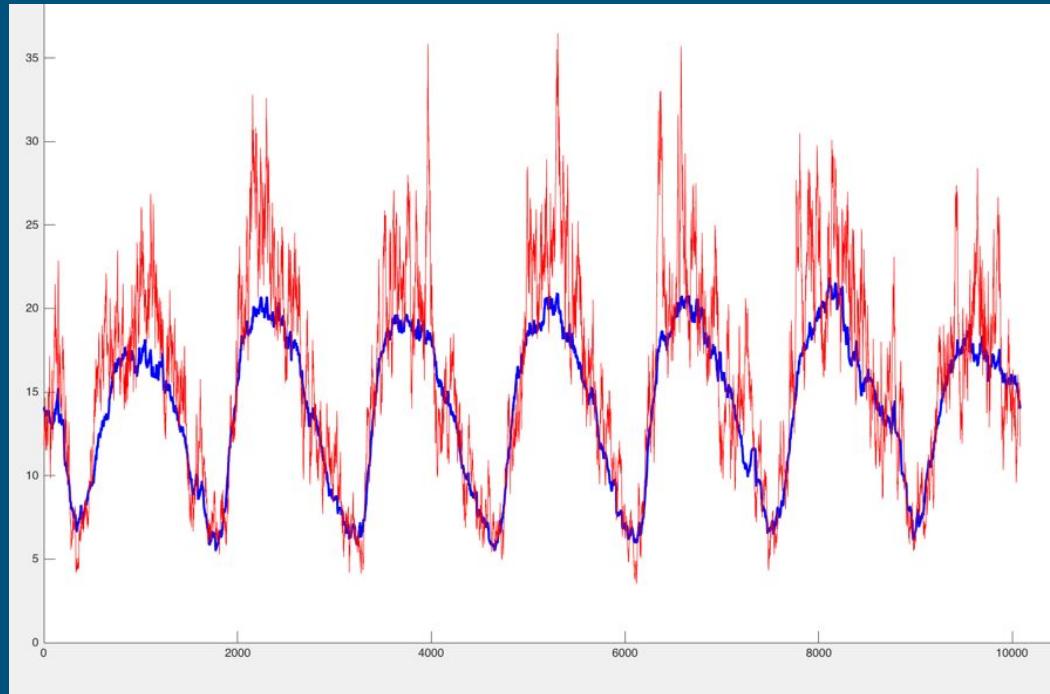
... other than peak hours, it looks like the mean tracks the variance!

Remind you of anything?

Steady state # in system for

$M/G/\infty \sim \text{Poisson}(m)$

Poisson \rightarrow mean == variance

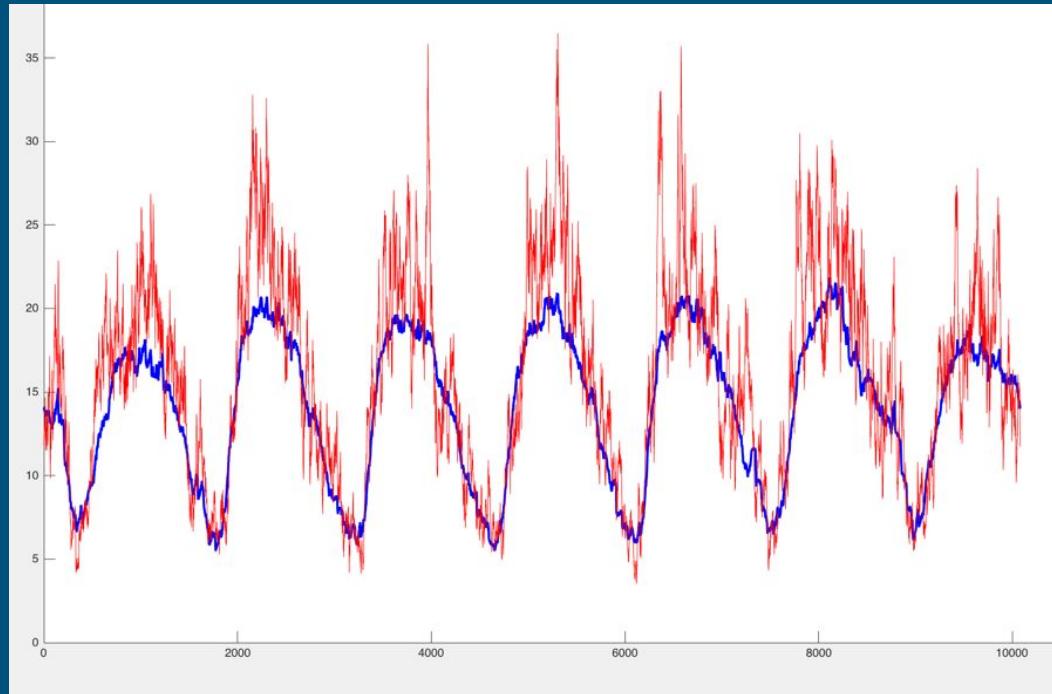


Queueing theory : Why does it work so well?

Blue = mean, Red = variance

You can run hypothesis tests
and find # in system is...

- *Normally distributed* during peak hours.
- *Poisson distributed* for off-peak hours.



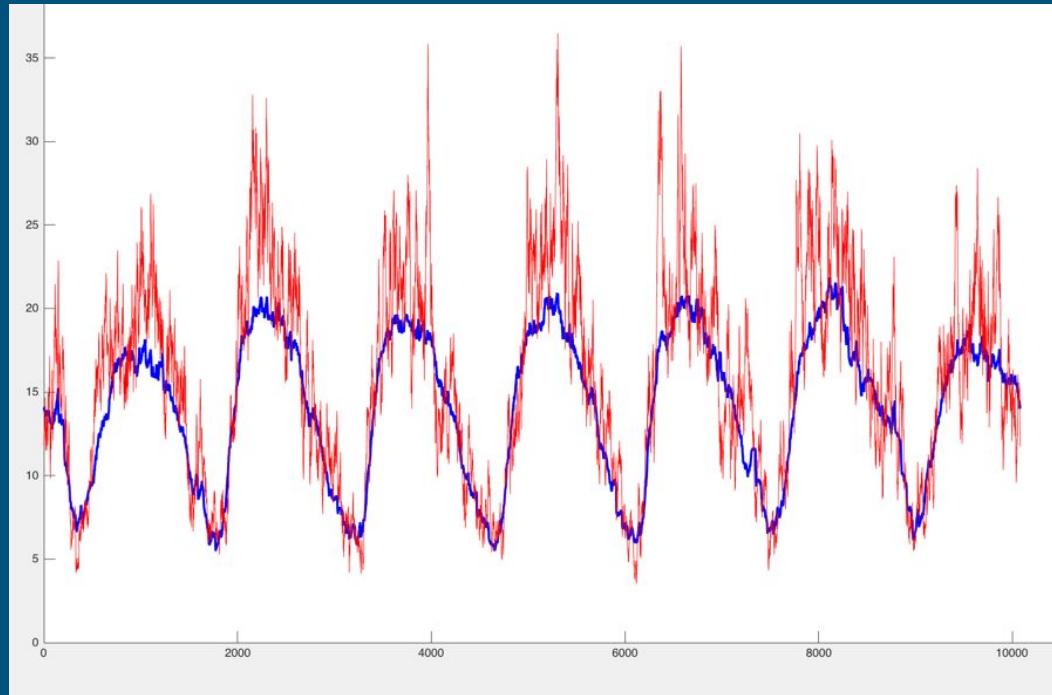
Queueing theory : Why does it work so well?

Blue = mean, Red = variance

Peak hours $\rightarrow \mathcal{N}$

Off-peak hours \rightarrow Poisson

*Interpretation : off-peak hours
see sufficient ambulances for
system to appear as $M/G/\infty$.*



Queueing theory : Is everyone so lucky?

I'm in a nice situation

- My arrivals are actually Poisson (what if they weren't?).
- We plan for 90%ile + [transit factor].
 - As a side effect, *transit factor enhances validity of $M/G/\infty$ approximation*
 - What if we didn't have the transit factor? What if QoS was lower?
- I'm not making huge changes to the [queueing] system (what if I was?).

Non-Stationary Staffing for a $[G/G/k](t)$

What if my arrivals weren't Poisson?

Paralleling the treatment of the stationary model in Whitt (1992, §2), we suggest the approximation

$$\nu(t) \approx z(t)m(t), \quad \text{where} \quad (17)$$

$$z(t) = 1 + \frac{(c_a^2(t) - 1)}{E[S(t)]} \int_0^\infty [1 - G_t(x)]^2 dx, \quad (18)$$

$$c_a^2(t) \approx \frac{\text{Var}[A(t) - A(t - \eta)]}{\int_{t-\eta}^t \lambda(u) du}, \quad (19)$$

There's something for that too!

Modifying an $[M/G/k](t)$

What if I was considering modifications to the $[M/G/k](t)$ system?

I couldn't use historical data on number in system to estimate $m(t)$.

But I'd still have a shot!

$$m(t) = \int_{-\infty}^t G_u^c(t-u) \lambda(u) du,$$

$$G_t^c(x) = e^{-\int_t^{t+x} \mu(u) du}, \quad x \geq 0.$$

$G_u^c(t) \triangleq P\{\text{Service of an arrival at time "u" lasts longer than "t" time units}\}$

... but this requires solving a differential equation.

Modifying an $[M/M/k](t)$: Overview

If services are exponential at rate μ , then we can recover $m(t)$ easily (with an ODE).

$$m'(t) = \lambda(t) - m(t)\mu,$$

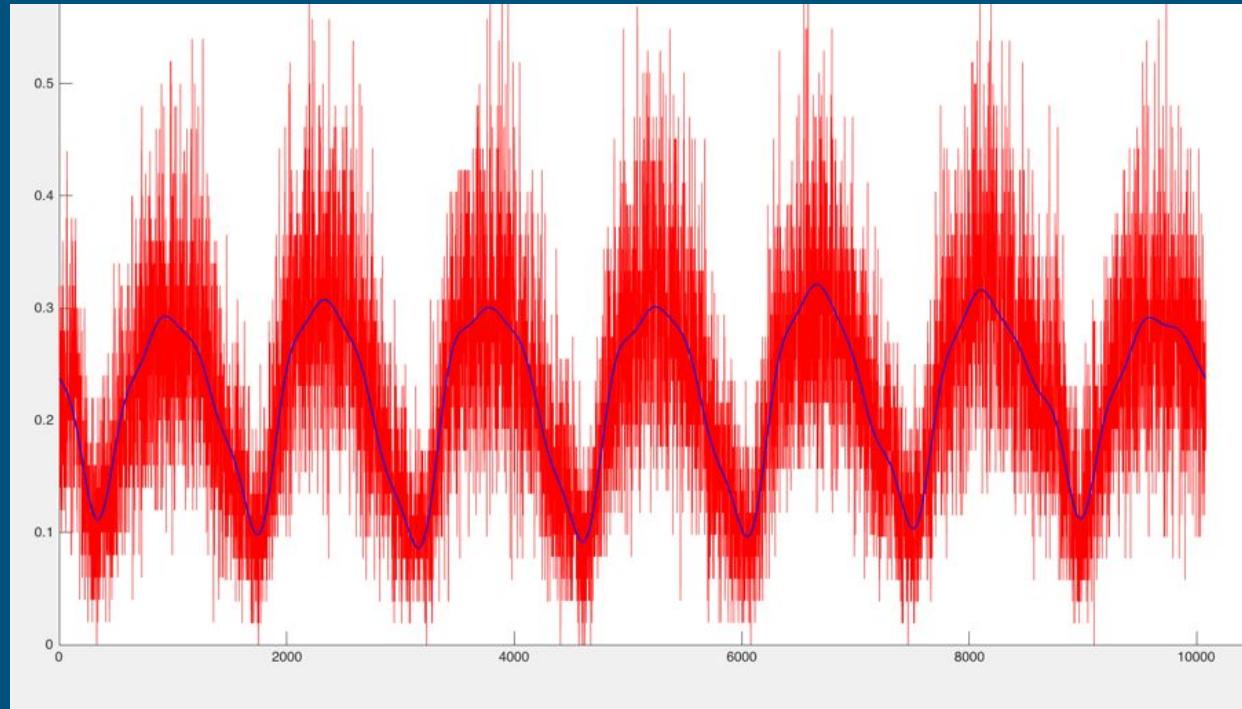
This could be useful when considering system modifications that could affect μ .

Although, now we have to estimate $\lambda(t)$

Modifying an $[M/M/k](t)$: Estimating $\lambda(t)$

MUCH more variation in measurements for $\lambda(t)$ than for $m(t)$.

Fourier approx. is decent, but there is a bigger concern of underestimating $\lambda(t)$.

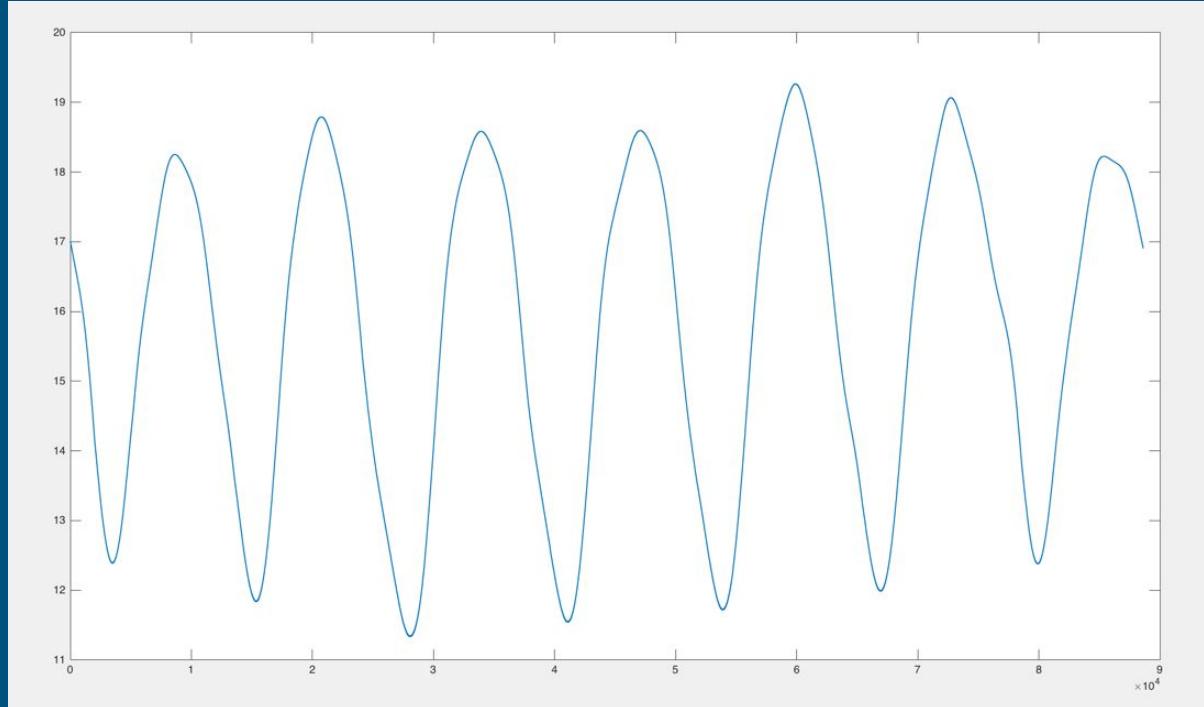


Modifying an $[M/M/k](t)$: Solving the ODE

Google how to use
MATLAB's "ODE45"
function.

Specify
Initial cond., $m(0)$.
Service rate, μ .
Function, $\lambda(t)$.

Hit "enter."



Recovering $m(t)$ by solving a differential eqn.

Do I recommend this?

- Not if you have access to historical estimates of $m(t)$

Why?

- Lots of variation in historical estimates of $\lambda(t)$.
- Differential equation requires specifying initial condition, and mean service time.
- *DiffEq solution is nearly, but not perfectly periodic with period of 1 week, even if $\lambda(t)$ is.*
 - ^ This actually comments on the validity of the 1-week period assumption made at the beginning of this presentation.

Summary

- Queueing theory can make strong predictions about systems *without* stationary distributions.
- Real-world emergency services systems (e.g. ambulances for SFFD) can be modeled as simple $[M/G/\infty](t)$ queues (maybe “transit factor” is important?).
- Parameters of non-stationary stochastic systems can be modeled with deterministic differential equations, and we can solve these differential equations numerically.
 - This differential equations approach could be useful for systems-design work currently handled by simulation.

References

“Server Staffing to Meeting Time-Varying Demand”

Jennings, Massey, Whit (1996).

“Coping with Time-Varying Demand When Setting Staffing Requirements for a Service System”

Green, Kolesar, Whitt (2007).

Discusses application areas / practical concerns more so than the 1996 paper.

Both of the papers above also discuss $[M/M/s + M](t)$ queues (i.e. queues with “impatient customers” / customer abandonment).

Thank you!

Questions?
